
https://doi.org/10.1007/s11042-021-10604-w

Construction andmaintenance of P2P overlays for live
streaming

Eliseu C. Miguel1 ·Cristiano M. Silva2 · Fernando C. Coelho3 · Ítalo F. S. Cunha3 ·
Sérgio V. A. Campos3

Received: 25 March 2020 / Revised: 16 October 2020 / Accepted: 25 January 2021 /

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
P2P live streaming requires low latency and low media discontinuity to provide users good
quality of experience. When peers are connected to a large number of partners, the commu-
nication overhead increases and sophisticated overlay maintenance strategies are required to
maintain undisrupted media distribution. In order to deal with these challenges, we present
the Peer Classification for Partnership Constraints technique for building and managing P2P
overlays for live streaming. The proposed algorithm defines classes of peers based on their
contribution to video chunk distribution. Classes are used to constrain partnerships among
peers. The number of potential partners in each class is constrained, avoiding competition
for partnerships between high-cooperation and low-cooperation peers. Since each peer has a
given number of slots dedicated to high-cooperation and low-cooperation peers, we guaran-
tee that the network keeps operating, even when incorporating a considerable share of free
riders. The strategy is simple, significantly reducing system complexity. Moreover, it can
also be used in conjunction with other strategies devised in the literature for greater gains in
efficiency. Experiments show that our Peer Classification for Partnership Constraints tech-
nique allows a streaming system to handle 50% of free riders under flash crowd events with
low latency and discontinuity.

Keywords P2P network · Overlay management · Live streaming · Flash crowd · Free rider

1 Introduction

Content distribution plays a major role in the Internet. For example, Netflix reported 139
million subscribers globally in 2018,1 and Cisco estimates Internet video traffic will amount
to 80% of all Internet traffic by 2021 [6]. Although large content providers have achieved

1https://edition.cnn.com/2019/01/17/media/netflix-earnings-q4/index.html
� Eliseu C. Miguel

eliseu.miguel@unifal-mg.edu.br

Extended author information available on the last page of the article.

Published online: 5 March 2021

Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

success with the classic client-server model, this requires extensive infrastructure worldwide
[1, 14, 35, 47].

Peer-to-peer (P2P) distribution facilitates streaming of media to large client populations
without relying on content distribution networks. In P2P systems, clients establish partner-
ships and form an overlay over the physical network to exchange pieces of video content
(chunks), reducing load on servers and increasing scalability [15, 16, 40]. P2P systems
typically support thousands of simultaneous users in hundreds of channels for video distri-
bution. Academic proposals include CoolStreaming [17], AnySee [18], SplitStream [3], and
ChunkySpread [42]; and operational systems include UUSee Inc.,2 Sopcast,3 PPLive,4 and
TVU Networks.5

However, the distribution of content in P2P networks faces several challenges, which are
amplified when considering live streaming, an application that demands very low latency
and sophisticated strategies for managing the overlay. Existing strategies include a) incen-
tive mechanisms to foster peer cooperation [11, 30]; b) techniques to optimize the P2P
overlay considering the underlying physical network [25, 31, 46]; and c) specific purpose
chunk exchange schedulers [10, 21, 22]; among others. Typically, these strategies increase
system complexity, and may also require the exchange of additional control messages,
incurring communication overhead [21, 40].

Additional problems can affect P2P live streaming systems, such as the sudden arrival of
a large number of peers, known as flash crowd, or free riding. For instance, Liu et al. [19]
propose a technique for dealing with flash crowds, by limiting the number of peers that
can join simultaneously, creating batches in which peers join the channel at discrete time
intervals. However, the presence of free riders and the overlay construction strategy are not
considered. To increase overlay resources during a flash crowd, Wu et al. [44] computes
the number of connections between new peers as a function of their upload bandwidth, but
authors do not consider the overlay construction strategy. Several previous works focus on
peer contribution incentives to mitigate free riding. However, these incentive mechanisms
for peer contribution may punish peers unable to cooperate (e.g., mobile users on metered
connections) even if the overlay has enough capacity to deliver media to them, pushing users
our of the overlay unnecessarily.

In this work, we identify an important cause of reduced P2P live streaming overlay distri-
bution efficiency: uncontrolled competition for available chunk upload bandwidth between
high-cooperation and low-cooperation peers. Our goal is to develop simple strategies for
constructing and maintaining an overlay for P2P live streaming that supports free rider peers
while preventing disruption of media distribution.

We define classes of peers based on their cooperation to video distribution. Each peer
in the overlay is configured to limit the number of partners from different classes. As more
cooperative peers join the overlay, more free rider peers are allowed to join the overlay and
receive the stream. However, if a large number of free rider peers try to join the overlay at
the same time, our techniques ensure undisrupted transmission by limiting the number of
free riders joining the overlay.

Our first proposed technique, Full Partnership Constraints (FPC), restricts partnerships
among peers in the overlay according to their classes. Full Partnership Constraints bring

2http://www.uusee.com/
3http://www.sopcast.com
4http://www.pplive.com
5http://www.tvunetworks.com/

20256 Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

high-cooperation peers closer to the streaming source, while low-cooperation peers are
pushed to the edge of the overlay. Complementary, Peer Classification for Partnership Con-
straints (2PC) combines the idea in FPC in a strategy to build and manage P2P overlays
without prior information about peers. The algorithm groups peers into classes by the coop-
eration of each individual peer, then applies different partnership constraints on each class.
Peer Classification for Partnership Constraints is a centralized algorithm that runs on the
streaming system’s server, and manages all peers and peer classes in the overlay.

We evaluate the proposed strategies in several scenarios. To quantify the efficiency of
the strategies, we perform real experiments on PlanetLab where we systematically reduce
the peer upload bandwidth in order to quantify the overlay’s distribution efficiency under
stressful conditions. We combine peers with limited upload bandwidth to a large set of free
riders in order to create very challenging scenarios. We also emulate flash crowd events to
study the robustness of the overlay to extreme peer churn. By using Peer Classification for
Partnership Constraints, the P2P network becomes able to handle cooperative peers and free
riders during flash crowds with reduced impact on media distribution.

The proposed techniques make minimal assumptions on a streaming system’s operation,
can be combined with several other existing techniques, with their advantages combined
for possibly even more performant media distribution. We compare our proposed tech-
niques with a baseline overlay construction strategy to focus on their gains and their impact
if integrated with other solutions. Our experiments show that the Peer Classification for
Partnership Constraints outperforms the baseline overlay construction strategy across all
evaluated scenarios. At the extreme, Peer Classification for Partnership Constraints allows
the P2P system to handle 50% of free riders under flash crowd events, with latency and dis-
continuity similar to those of the baseline strategy with only 30% of free riders and stable
peer population.

This work is organized as follows. Section 2 presents related work. Section 3 describes
the P2P live streaming prototype developed for running the experiments. Section 4 discusses
the experimentation environment used in this work. Section 5 presents the partnerships
constraint techniques developed in this work. Finally, Section 6 concludes the work.

2 Related work

P2P is a well-studied subject counting on extensive literature. In this section, we present a
selection of related work in partnership management, overlay construction, addressing free
riders, and flash crowd management in order to contextualize this work.

Partnership management several works are dedicated on building and evaluating algo-
rithms and mechanisms for efficient P2P live streaming. Contributions cover techniques to
optimize P2P overlay topologies [9, 10, 29, 38], scheduling chunk requests and transmis-
sions [10, 48], and adapting topologies according to the overlay and network conditions
[43]. Neighborhood filtering strategies for overlay construction are important to achieve
media distribution efficiency, and the literature presents several efforts towards this direction
[24, 33, 37, 45].

Some neighborhood filtering strategies limit the number of partners that peers in the P2P
system can have, such as in [28], while other approaches dynamically set the number of
partners for each peer considering the peer’s contribution [21]. The first strategy is easier
to deploy, but the second improves chunk dissemination capacity in the system by making
better use of available bandwidth at peers. To combine the ease of deployment with the

20257Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

improved capacity of these strategies, in this work we establish a limit number of partners
but dynamically establish partnerships depending on a peer’s contributions. Supported by
these strategies, peers with low upload bandwidth can manage a large number of partners
without compromising the video transmission.

Traverso et al. [40] compare several neighborhood filtering strategies ranging from ran-
domized approaches to very sophisticated strategies considering peer bandwidth and peer
physical location. However, in most of these work, peers do not constrain the establish-
ment of output partnerships (i.e., the set of partners to which a peer redistributes media).
In realistic scenarios where the upload bandwidth of peers is restricted, such strategies
require peers to answer requests and forward content to a subset of out-partners. Differently
from such approaches, here we propose an overlay construction algorithm based on random
neighborhood filtering allowing peers to forward content to all partners.

Overlay construction and free riders many overlay construction strategies propose push-
ing free riders to the edge of the overlay to improve efficiency of media distribution. Ullah
et al. [41] propose an autonomous management framework that enables peers to learn the
user behavior and self-organize through a stabilization process that continuously pushes
unstable peers towards the leaves of the distribution tree. Incentive mechanisms that aim to
foster the contribution of peers try to identify and punish selfish behavior, while improving
the QoS for very cooperative peers [7, 11, 13, 23, 30].

A well-known incentive mechanism used in P2P file sharing is BitTorrent’s tit-for-tat [7].
Tit-for-tat forces balanced pairwise data exchanges, which are too restrictive to enable live
streaming [30]. Some works have attempted to use tit-for-tat as a feature, where uncoopera-
tive peers experience degraded QoS, even at over-provisioned scenarios [23]. As examples
of incentive mechanisms for live streaming, Contracts [30] identifies uncooperative peers
auditing cryptographic receipts of chunk transfers, while LiFTinG [13] identifies uncooper-
ative and malicious peers based on their partnerships. These strategies are complementary
to our work and can be used in conjunction with our proposals to improve live streaming
delivery.

Shahriar et al. [36] investigated the effect of the presence of free riders on the per-
formance of the P2P live streaming and developed a discrete-time stochastic model that
can inform new incentive mechanisms. However, incentive mechanisms may punish peers
unable to cooperate even if the overlay has spare capacity to deliver media to them.

Oliveira et al. [26] observe two kinds of free riders. Conscious free riders inform their
partners that they are unwilling or unable to upload data. Conscious free riders have small
impact over P2P overlay distribution efficiency as no peer ever wastes time and bandwidth
sending requests to them. On the other hand, oblivious free riders do not report that they are
unwilling or unable to upload data, which results in unanswered video chunk requests and
degradation of chunk distribution efficiency.

Unlike other overlay maintenance algorithms that identify and exclude free rider peers
from the overlay, we instead propose a P2P overlay maintenance algorithm that accepts
(conscious) free riders if the overlay has spare capacity and that provides a simple incentive
mechanism to foster peer contribution.

Flash crowds according to Chen et al. [4], when the flash crowd occurs, the sudden arrival
of numerous peers may starve the upload capacity of the system, reduce the QoS, and even
cause the collapse of the system. In order to mitigate the effect of flash crowds (without
relying on very sophisticated flash crowd handle techniques), streaming systems such as
CoolStreaming or PPLive rely on a large number of dedicated servers forming Content

20258 Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Delivery Networks (CDNs) [19, 45]. However, CDNs increase the costs without guarantees
that all flash crowds will be properly handled.

Budhkar et al. [2] propose an overlay management strategy that organizes peers in
the overlay based on their serviceability. In this case, peers are arranged in a hybrid
tree-mesh overlay at the edges of a CDN in which peers with higher upload capac-
ity are part of an extended CDN tree. Complementary, our approaches may be com-
bined with this work to construct a robust overlay around the CDN. In addition, our
approach can identify high-contribution peers in the tree-mesh overlay to support its
maintenance.

The majority of the research about the impact of flash crowds on P2P streaming systems
do not focus on changing the overlay construction mechanisms [19, 20]. For instance, Liu et
al. [20] propose a technique that increases overall peer join rate and distribution efficiency
under flash crowds by batching joins to preserve network stability. The same authors [19] (in
follow-up work) show that one important overlay constraint is the number of partnerships
that peers maintain. TopT [34] focuses on building a system with a hybrid overlay to mitigate
the side effects of flash crowds. In order to determine the number of peers that represent a
flash crowd, Chen et al. [4] provide a comprehensive study on the performance of peer-to-
peer live streaming systems under flash crowds, including analytical models relating flash
crowd and time for network recovery.

Chung & Lin [5] proposed to control the joining process during flash crowd events for
a tree-based peer-to-peer live streaming system. They propose newcomer peers first join
a subtree that branches off from the existing master tree. This protects partnerships in the
master tree and prevents performance degradation for peers that have already joined the
overlay. In Section 5 we present an approach similar this work for mesh-based overlay.

In this work, we complement these studies with an evaluation on the impact of flash
crowds in real scenarios, and we propose practical modifications to overlay construction
mechanisms that naturally lead to robust P2P overlays that can quickly join newcomer peers
during flash crowds.

3 P2P Live streaming systems

In this section we describe general characteristics of P2P live streaming systems, introduc-
ing definitions and parameters relevant to this paper. We also describe how these charac-
teristics manifest in our research-oriented, general-purpose live streaming P2P prototype,
called TVPP [27], that we use for evaluation.

P2P live streaming can be defined as the realtime transmission of a live video feed to
a set of peers that collaborate with each other to disseminate the content. The source S is
a special peer that encodes the video, splits the video into chunks (a chunk may contain
multiple video frames), and starts the distribution.

Each peer p has a set of partners N (p) that p connects to and exchanges video chunks
with. To get more control over partnerships, N (p) is split between two subsets of part-
ner peers: Nin(p) containing in-partners (partners that provide chunks to p) and Nout(p)

containing out-partners (partners receiving chunks from p).
The maximum number of in-partners is given by Nin(p), while the maximum number

of out-partners is denoted by Nout(p). For the source, Nin(S) = ∅. In order to join a live
streaming channel, a peer p registers itself at a centralized bootstrap server B, which returns

20259Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

to p a subset of all peers currently active in the system as potential partners.6 Peer p selects
peers from this subset and tries to establish partnerships with them.

Successfully established partnerships determine N (p), and a relationship p ∈ Nout(p
′)

implies p′ ∈ Nin(p). When p detects that one of its partners p′ ∈ N (p) has been silent for
longer than a predefined time period, p removes p′ from N (p). However, peer p period-
ically contacts the bootstrap server to obtain a new list of potential partners to replace lost
partnerships. The values of Nin(p) and Nout(p) are determined for each peer p. In TVPP, we
set Nin(p) = 10 or 20, and set Nout(p) proportional to p’s available upload bandwidth. This
configuration is compatible with Liu et al.’s findings [19] that the number of partnerships
(i.e., Nin(p) + Nout(p)) should be at least 10.

Peers randomly choose in-partners from peer lists received from the bootstrap server.
However, to guarantee that a new peer n is able to join the overlay, an existing peer p

employs a mechanism to accept new out-partners even when Nout(p) is full. In TVPP, a
peer p disconnects a random out-partner q ∈ Nout(p) expected to cooperate less upload
bandwidth than the new joining peer n. In particular, p disconnects a random peer q such
that Nout(q) < Nout(n). After disconnecting a peer in this way, peer p may become unable
to process new out-partner requests for some time period τ to prevent overlay instability. In
this work, we set τ = 60s, which is large enough to prevent instability (particularly during
flash crowds) while still allowing the overlay to expand.

Each peer has a local buffer to store video chunks. Periodically, each peer exchanges
buffer maps with their out-partners to advertise available chunks. Additionally, peers keep
track of chunks not yet received in order to identify the in-partners able to serve those
chunks. P2P systems also employ a chunk scheduler that decide the order in which requests
should be served, and which requests should be served in case of insufficient upload
bandwidth.

In the scope of this work, we schedule chunk requests using the earliest deadline first
scheduler extended with Simple Unanswered Request Eliminator (SURE) [26]. SURE
makes peers prefer to send chunk requests to the in-partner with the least number of
unanswered (timed-out) requests, balancing load and reducing the number of unanswered
requests. A peer considers that a request has timed out if it is not answered within
500ms [26]. Finally, cooperative peers serve requests in order of arrival at a rate defined by
their available bandwidth.

To support the evaluation required in this research, TVPP also monitors peer behavior.
Peers send monitoring reports to the bootstrap server every 10s. The reports include, among
other information: the number of chunks generated (only reported by the source S), the
number of received chunks, the number of transmitted chunks, and the number of chunks
that have missed their playback deadline.

4 Experimentation environment

We run experiments on PlanetLab [32] using customized TVPP client. During the exper-
iments, we use the maximum number of available PlanetLab nodes (approximately 110
nodes, with slight variations across experiments). PlanetLab provides high bandwidth
between nodes, and we constrain the available bandwidth at each peer using TVPP to emu-
late different network scenarios. The bootstrap server is located at our laboratory with plenty

6The bootstrap server is also commonly referred to as a tracker.

20260 Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

computing power and network bandwidth. The source streams video at a constant bitrate of
420kbps (approximately 35 chunks per second).

Each run lasts between 900s and 1900s, a sufficient period for building and exercising
the P2P overlay, allowing observation of the streaming system’s behavior and performance.
Experiments start with one single peer running on each PlanetLab node (around 110 peers
in the overlay). The initial overlay containing the initial set of peers stabilizes in less than
100s (Section 5). After 350s to 400s of simulation, which allows for observation of the
performance of the initial overlay, we launch 10 additional peers on each PlanetLab node
to emulate a flash crowd event, and observe the performance of the overlay under more
challenging scenarios. We limit the number of peers on each PlanetLab node to 10 due
to bandwidth restrictions on PlanetLab. We repeat each experiment five times to compute
average values for the metrics and estimate variance.

We keep each peer’s upload bandwidth, the number Nin(p) of in-partners, and the
number Nout(p) of out-partners constant throughout an experiment. Across multiple exper-
iments, we vary the number of in-partners and the upload bandwidth which, in turn,
determines the number of possible out-partners. This way, each experiment covers a differ-
ent deployment scenario and network properties. In particular, we study the ratio between
the number of in-partners and out-partners:

r =
∑

p Nin(p)
∑

p Nout(p)
. (1)

Values of r < 1 correspond to an overlay where peers have out-partners than in-partners,
and may be found on aggressive configurations, where peers have a high number of out-
partnerships but may lack bandwidth to answer all chunk requests. On the other hand, values
of r > 1 may be found on conservative configurations, where peers have a low number of
out-partnerships but are more likely to have enough bandwidth to answer all chunk requests.
Finally, we also experiment with balanced overlays where r = 1.

In order to evaluate the topological features of the overlay, we distribute peers into four
disjoint classes: (a) hot, (b) warm, (c) cold, and (d) free riders. Peers are classified according
to the amount of upload bandwidth they have available, configured in TVPP. Peers belong-
ing to the same class have the same upload bandwidth. A significant share of peers is defined
as free riders (i.e., unwilling or unable to upload content). Free riders have no out-partners,
and never advertise chunks.

We evaluate two metrics to capture the performance of media distribution: discontinu-
ity and chunk distribution latency. Discontinuity is computed as the fraction of chunks not
received in time for playback (in other words, the fraction of chunks that missed their play-
back deadline). Discontinuity leads to glitches or hiccups and significantly reduces quality
experienced by users [12]. Chunk distribution latency denotes the time interval between the
first transmission of the chunk by the source S until its reception by peers. We report the
average chunk distribution latency across all peers in the network.

5 Partnership constraint techniques

In this section, we present our partnership constraint approaches and their evaluation. In
Section 5.1 we present our first solution to mitigate competition between cooperative and
free rider peers. When a larger number of peers ask to join the P2P system, we isolate
newcomer peers from existing peers by instantiating new, smaller, and temporary Parallel

20261Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Overlays supported by the master overlay. This approach imposes partnerships constraints
among peers, limiting newcomer peers to establishing connections to other newcomer peers
in the same parallel overlay, which prevents resource competition and quality of service
degradation on the master overlay. With Parallel Overlays we improve our P2P overlay
to support an amount of free riders, even during flash crowds, that is not supported by
the baseline approach [19]. However, Parallel Overlays are difficult to configure, and their
maintenance incurs significant complexity and communication overhead, limiting their use.

Section 5.2 presents the Partial Partnership Constraints approach. Partial Partnership
Constraints is based on the peer classes proposed earlier, but is easier to configure and
supports more free riders than Parallel Overlays. However, as the name suggests, Partial
Partnership Constraints does not isolate peer classes and permits some competition among
cooperative and free rider classes.

Section 5.3 presents the Full Partnership Constraints (FPC) approach, which extends
the Partial Partnership Constraints approach to completely isolate cooperative and free rider
peers. We propose and test several configurations of FPC and the results show higher
overlay distribution efficiency when compared with the Partial Partnership Constraints
approach. FPC, however, assumes peer classes are known and static over the period while
they participate in the overlay.

Finally, Section 5.4 presents Peer Classification for Partnership Constraints (2PC),
where we present a solution to dynamically classify peers by their level of cooperation
throughout the period while they participate in the overlay. 2PC allows dynamic execution
of FPC in real deployments. If peer behaviour changes, for example, a peer’s available band-
width is temporarily reduced, 2PC can identify this and adjust the peer’s class, which then
triggers FPC to adjust the overlay. Full Partnership Constraints and Peer Classification for
Partnership Constraints techniques are the major contributions of this work.

5.1 Temporary parallel overlays for constraining peer partnerships

We propose a strategy for imposing partnership constraints among peers by instantiating
parallel overlays composed of newcomer peers. Our goal is to minimize the risk of col-
lapsing the overlay due to the large amount of new peers joining the network abruptly. The
proposed strategy is derived from the work presented by Chung and Lin [5]. These authors
handle flash crowds in tree-based overlays by proposing that new peers should first join a
subtree that branches off from the existing tree as a way to protect the partnerships already
established.

Here, we present an adaptation of this idea to mesh-based P2P overlays. The main feature
of the proposed strategy is requiring no modification to peers: the formation and mainte-
nance of parallel overlays is managed entirely by the bootstrap server, and imposes minor
communication overhead. In order to handle new peers, the bootstrap server selects a sub-
set of the peers from the master overlay (the master overlay is the one holding those peers
already connected to the overlay before the flash crowd event). Peers are selected based on
their cooperation level, and each selected peer becomes a special virtual source. For our
purposes, virtual sources receive media chunks from peers participating in the master over-
lay, but do not cooperate back: they cooperate with newcomer peers in the parallel overlay
they serve as a source for.

The isolation of virtual sources prepares the network for receiving the burst of new peers
from the flash crowd event. Arriving peers receive from the bootstrap a set of virtual sources
and peers in a parallel overlay for establishing partnerships. Arriving peers create new tem-
porary branches (isolated parallel overlays). Since the bootstrap server ensures partnerships

20262 Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

are only established among peers participating in the same overlay, the master overlay is
protected from disruption induced by joining newcomers.

Whenever the parallel overlay reaches stability (in terms of number of peers and partner-
ships), the bootstrap server merges the parallel overlay into the master overlay by allowing
partnerships between peers from both overlays. This is accomplished by having the boot-
strap server advertise peers in the master overlay to the parallel overlay, and vice versa. This
eventually leads to both overlays merging.

The key to the merge process is that the bootstrap allows only cooperative peers from the
parallel overlay to establish new partnerships with cooperative peers in the master overlay.
This way, free riders keep their partnerships stable and are passive during the merge, avoid-
ing competition for partnerships and disruption of chunk distribution. The isolation between
free riders and cooperative peers from master overlay based on the parallel overlay is our
first peer partnership constraint evaluate.

Partnerships established during the merging process have a low risk of compromising the
master overlay because the parallel overlay can already efficiently distribute video chunks
prior to starting the merge. In particular, peers in the parallel overlay have full buffers and
functioning in- and out-partnerships. The formation and merging of parallel overlays is
presented in Fig. 1.

The formation and merging of parallel overlays require coordination by the bootstrap
server to constrain the partnerships that arriving peers can establish. This simply changes
the content of peer advertisements made by the bootstrap server, but does not incur any
additional communication costs. The formation of parallel overlays also requires that virtual
sources terminate their partnerships in the master overlay before they can start establishing
new partnerships in the parallel overlay. This requires a small modification to clients and
minor communication overhead.

Despite the difficulty of configuring parallel overlays, this work contributes by proposing
an adaptation of the original tree-based overlay approach to the construction of P2P mesh-
based overlay.

5.1.1 Experimental setup

We present experiments designed to evaluate the efficiency of adopting parallel overlays for
imposing peer partnership constraints in the P2P system. As baseline, we consider the inter-
esting strategy presented by Liu et al. [19]. These authors propose handling flash crowds
through a queue to pace the joining process of new peers. At each iteration, the strategy

Fig. 1 Steps for building parallel overlays. In order to preserve the master overlay, new peers first join
“temporary” overlays that branch off from the master overlay. A subset of well-connected peers from the
master overlay are assigned as temporary servers acting as virtual sources of chunks. virtual sources remain
linked to the master overlay and forward chunks to the temporary parallel overlays. As soon as the parallel
overlays stabilize, they are merged into the master overlay without disrupting it

20263Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

evaluates the overlay in order to determine the subset of newly arrived peers that will join
the network. No restrictions for free riders joining the overlay are imposed.

By monitoring the overlay (and the joining process), Liu at al. define the time duration
of each iteration, allowing the network to reach stability before iterating again. In order to
compute the experimental results of the our baseline, we implement a simplified version of
Liu et al.’s strategy in TVPP (our prototype) where iterations happen until all newcomers
join the overlay. TVPP considers static time windows of 100s for all iterations, and three P2P
configurations for joining the new peers: a) all at once; b) spread across four iterations; and
c) spread across six iterations. Along this set of experiments, based on [19] and explained in
Section 3, we set up Nin(p) = 10 and randomly allocate peers according to the four classes
presented in Table 1.

5.1.2 Baseline: Joining new peers into the master overlay using queues for pacing the
joining process

Figure 2a–e show the results obtained after simulating the baseline strategy proposed in [19]
where 1,000 new peers go through a queue to pace the joining process. We consider that
successful peers are the ones receiving, at least, 95% of all distributed video chunks prior
to the chunk playback deadline. In Fig. 2a–c, the y-axis indicates the number of incoming
and joined peers in non-overlapping time intervals of 10s. The successful network is the one
presenting the number of joined peers (green) in a stable (flat) line close to the number of
incoming peers (purple). The x-axis indicates the experiment time.

Figure 2a shows the scenario where peers join all at once. Figure 2b uses four iterations
for joining all peers (25% of peers joined each iteration), while Fig. 2c indicates the scenario
where new peers are joined through six iterations (≈18% of new peers are joined each
iteration). We point out that the overlay collapses in the first scenario (Fig. 2a) after around
1,000s. We also notice several peers failing to receive the media in Fig. 2b–c. We observe
that some experiments have very low numbers of joined peers (green dots close to the x-
axis). The instability shown in these figures illustrates the negative side of flash crowds:
when a very large number of peers are added to the network in a short period of time,
partnerships break and the distribution of chunks becomes disrupted leading to the collapse
of the overlay.

Although the baseline failed to successfully join the peers for 1, 4, and 6 iterations
(Fig. 2b–c), we limited our experiments to 6 interactions so that newcomers did not take
too long to join the overlay. In this case we are not looking for the number of the iterations
that preserves overlay stability when facing the flash crowd. Our goal is to understand the
behavior of the overlay when applying a classic technique to identify a resource-constrained
and challenging scenario to use in the evaluation of our techniques.

Table 1 Distribution of peers into classes of connectivity

Peer Upload

Class (Mb/s) Share Nin(p) Nout(p)

Hot peers (high upload bandwidth) 4.0 11% 10 23

Warm peers (average upload bandwidth) 2.5 22% 10 20

Cold peers (small upload bandwidth) 1.5 27% 10 09

Free riders (no upload bandwidth) 0.0 40% 10 00

20264 Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0

N
um

be
r

of
 p

ee
rs

 in
 o

ve
rla

y

Time (s)

Incoming
Joined

(a) (b)

(d) (e)

(c)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0

N
um

be
r

of
 p

ee
rs

 in
 o

ve
rla

y

Time (s)

Incoming
Joined

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0

N
um

be
r

of
 p

ee
rs

 in
 o

ve
rla

y

Time (s)

Incoming
Joined

 0

 2

 4

 6

 8

 10

 12

 14

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0

A
ve

ra
ge

 d
is

co
nt

in
ui

ty
 (

%
)

Time (s)

Whole Overlay (−σ=0.41)
Master Overlay (−σ=0.67)

 0

 2

 4

 6

 8

 10

 12

 14

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0
A

ve
ra

ge
 la

te
nc

y
(s

)

Time (s)

Whole Overlay (−σ=0.39)
Master Overlay (−σ=0.41)

Fig. 2 Performance using queues for controlling the joining of new peers. Results obtained after simulating
the strategy proposed by Liu at al. [19] where new peers first go through a queue to pace the joining process.
In all figures, the x-axis indicates time (seconds). In Fig. 2a–c, the y-axis indicates the number of peers in the
overlay. The purple dots indicate the number of incoming peers trying to join the overlay, while green dots
show the number of peers that successfully joined. Figure 2a shows the scenario where all peers are joined at
once. Figure 2b uses four iterations for joining all peers (25% of peers joined each iteration). Figure 2c uses
six iterations for joining all peers (≈18% of new peers are joined each iteration). We can notice the overlay
collapsing in Fig. 2a–c, when time > 1,000s. Figure 2d presents (y-axis) the average discontinuity (share
of chunks not received in time for playback). The yellow line indicates the discontinuity for peers that have
successfully joined the master overlay (before the flash crowd). The blue line indicates the discontinuity for
all peers in the overlay (i.e., peers that joined before and during the flash crowd event). Figure 2e presents (y-
axis) the average latency for chunk distribution. The latencies for the master overlay and the whole overlay
are presented by the yellow line and the blue line, respectively

Now, we present discontinuity and latency for the less challenging scenario simulated
for the baseline (scenario where peers join the network through six iterations) shown in
Fig. 2c. The discontinuity is presented in Fig. 2d. The y-axis indicates the share of chunks
not received in-time for playback, while the x-axis indicates the time (s). The yellow line
indicates the discontinuity for peers in the master overlay, while the blue line indicates the
discontinuity for the whole overlay (all peers in the overlay, i.e., peers that joined before
and during the flash crowd event). Both yellow and blue lines are the average of all exper-
iments shown by the Bézier curve. The legend also presents the standard deviation for the
discontinuity.

We notice the discontinuity rises linearly before 1,000s. After that, the discontinuity
increases rapidly, indicating that the network is collapsing, no longer able to deal with the
large amount of free riders. Complementary, Fig. 2e presents the latency for chunk distri-
bution (also considering the scenario where peers join the network in six iterations). The
yellow and blue lines have the same meaning as previously. Finally, we notice the latency
increasing very high after 1,000s.

Figure 2 shows that the overlay is stable before 1,000s. After that, the network becomes
compromised and several peers are no longer able to receive the media timely. This issue is
indicated by very high discontinuity and very high latency shown in Fig. 2d–e after 1,000s
of operation. Interestingly, we also notice that peers that joined the network before the flash

20265Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

crowd are also negatively impacted (yellow line). Our techniques using parallel overlays
preserve the master overlay during flash crowds, which we evaluate next.

In conclusion, the negative effects of the flash crowd identified in our baseline evaluation
show that unrestricted upload bandwidth allocation among peers (Table 1) compromises the
construction of the overlay with the classic technique. Thus, we will start our studies of
overlay construction imposing the worst case of the baseline (peers joining at once Fig. 2a)
while aiming to obtain better latency and discontinuity values than the best case of the
baseline (Fig. 2c).

5.1.3 Evaluating the application of parallel overlays

Here, we repeat the same experiments, but now considering the application of parallel over-
lays for handling 1,000 new peers. We select six high-cooperation peers as virtual sources.
Newcomer peers are uniformly distributed over the available virtual sources for construct-
ing well-balanced parallel overlays. In this case, six parallel overlays with a proportional
number of peers for each baseline iteration (Fig. 2c) will be constructed, however at the
same time.

The simulation starts at time t = 0s. The flash crowd starts at t = 350s when all parallel
overlays are formed. The bootstrap server waits (arbitrarily) 200s for the stabilization of
parallel overlays, then it starts merging the parallel overlays into the master overlay. The
first overlay starts the merge when t = 550s. Each one of the following overlays are merged
in subsequent time windows starting with the delay of 100s (so, the second parallel overlay
starts the merge when t = 650s, the third starts at t = 750s, and so on, until the sixth overlay
starts the merge at t = 1050s).

Figure 3a shows that, for the same pattern of incoming peers (purple points) in Fig. 2a,
the application of parallel overlays provide a steadily and consistently distribution of media
to an increasing number of peers (green). In fact, since we are using six parallel overlays,
we achieve a similar result to the one presented in Fig. 2c, but the parallel overlays prevent
the network from collapsing (differently from what we see in Fig. 2c).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0

N
um

be
r

of
 p

ee
rs

 in
 o

ve
rla

y

Time (s)

Incoming
Joined

(a) (b) (c)

 0

 2

 4

 6

 8

 10

 12

 14

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0

A
ve

ra
ge

 d
is

co
nt

in
ui

ty
 (

%
)

Time (s)

Whole Overlay (−σ=1.69)
Master Overlay (−σ=0.72)

 0

 2

 4

 6

 8

 10

 12

 14

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0

A
ve

ra
ge

 la
te

nc
y

(s
)

Time (s)

Whole Overlay (−σ=1.28)
Master Overlay (−σ=0.51)

Fig. 3 Performance of parallel overlays during flash crowd. Figure 3a shows the number of peers in the
overlay after receiving a flash crowd of 1,000 peers in time=350s. The x-axis indicates time, while the y-axis
indicates the number of peers in the overlay. Purple dots indicate the number of incoming peers trying to join
the overlay, while green dots show the number of whole peers that successfully joined the overlay. Figure 3b
presents (y-axis) the average discontinuity (share of chunks not received in time for playback). The yellow
line indicates the discontinuity for peers that have successfully joined the master overlay (before the flash
crowd). The blue line indicates the discontinuity for all peers in the overlay (i.e., peers that joined before
and during the flash crowd event). Figure 3c presents (y-axis) the average latency for chunk distribution. The
latencies for the master overlay and the whole overlay are presented by the yellow line and the blue line,
respectively

20266 Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Figure 3b shows the discontinuity. We notice that the master overlay (yellow) is pre-
served, while the overall discontinuity (considering all parallel overlays shown in blue)
peaks around time 650s. Complimentary, Fig. 3c shows the latency for chunk delivery, and
we also notice the master overlay is preserved, while the latency in the parallel overlays
peaks when t=600s. Although latency and discontinuity increase as the overlay grows, such
increase is small and steady, not putting the master overlay in danger (differently from
results for the baseline strategy in Fig. 2d–e).

The success of parallel overlays over the baseline can be explained because the parallel
overlays preserve the master overlay by creating virtual sources. As a consequence, free rid-
ers are contained in special slots (for maintaining their old partnerships) after the merger of
the parallel overlays. Therefore, we aim to propose new techniques that impose partnerships
between cooperative peers and free riders without the need for virtual sources, as proposed
by parallel overlays.

5.1.4 Remarks

In Section 5.1, we compared two approaches for handling flash crowds: i) the use of queues
to pace the joining process; ii) the use of parallel overlays. Our results show that parallel
overlays are effective at isolating the master overlay from disruption caused by flash crowds.
In particular, although latency and discontinuity increase as the overlay grows, the increase
is small and predictable, not putting the master overlay in danger. However, the implemen-
tation of parallel overlay incurs complexity at the bootstrap server, particularly to select
virtual sources and decide when to merge parallel overlays into the master overlay. The next
section presents an alternative approach that is simpler, easier to deploy, and more effective.

5.2 Partial partnership constraints

In this section we devise a simple mechanism to increase the stability and efficiency of P2P
overlays. The basic idea is to reduce the competition among free riders and cooperative
peers by imposing partnership constraints on peers during in the master overlay, without the
parallel overlays. In other words, we group peers into classes according to their cooperation
to the network, and we use such grouping for defining the kind of partnerships that will take
place.

5.2.1 Experimental setup and experiments

As before, we consider four peer classes (Table 1). Partial partnership constraints among
peers from different classes are shown in Fig. 4. We assign classes to peers using the shares
defined in Table 1. Figure 5a shows the overlay efficiency when we restrict the partnership
of peers. We observe fast joins and the number of joined peers (green) in a stable (flat)
line close to the number of incoming peers (purple) on all experiment runs. The partnership
constraint strategy pulls cooperative peers close to the source, and pushes free riders off
to the edge of the overlay. Such behavior is desired since it ensures that peers with more
upload capacity receive video chunks earlier, having more time to redistribute the chunks to
other peers in the overlay.

Figure 5b–c show that the efficiency for distributing chunks is improved. We observe
that the discontinuity and the latency for chunk distribution remain stable and with low
values for the whole overlay, including the master one. In particular, all peers achieve per-
formance similar to that of the master overlay when using parallel overlays (see Fig. 3a).

20267Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Fig. 4 Partial partnership constraints. Hot peers (high upload bandwidth) are allowed to accept out-partners
from classes hot, warm, and cold. Warm peers (average upload bandwidth) are allowed to accept peers from
any class as out-partners. Cold peers (low upload bandwidth) are allowed to establish out-partnerships only
to free riders

We notice that the partnership constraints yield average discontinuity below 4% throughout
the experiment, a value considered in [39] as a target for discontinuity.

In addition, as some partnerships between cooperative and free rider peers in the master
overlay may be broken in favor of the cooperative peers from flash crowd (Section 3),
we observe in Fig. 5b a slight increase in the discontinuity average (yellow) in the master
overlay. We note that this discontinuity is concentrated on free rider peers (not shown).

Motivated by such gains in performance achieved using the partnership constraints, we
restrict the resources of the peer population to test how the strategy would respond. We

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0

N
um

be
r

of
 p

ee
rs

 in
 o

ve
rla

y

Time (s)

Incoming
Joined

(a) (b) (c)

 0

 2

 4

 6

 8

 10

 12

 14

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0

A
ve

ra
ge

 d
is

co
nt

in
ui

ty
 (

%
)

Time (s)

Whole Overlay (−σ=0.45)
Master Overlay (−σ=1.07)

 0

 2

 4

 6

 8

 10

 12

 14

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0

A
ve

ra
ge

 la
te

nc
y

(s
)

Time (s)

Whole Overlay (−σ=0.52)
Master Overlay (−σ=0.57)

Fig. 5 Performance of partial partnership constraints for 40% of free riders. Figure 5a shows the number of
peers in the overlay after receiving a flash crowd of 1,000 peers in time=350s. The x-axis indicates time, while
the y-axis indicates the number of peers in the overlay. Purple dots indicate the number of incoming peers
trying to join the overlay, while green dots show the number of peers that successfully joined the overlay.
Figure 5b presents the average discontinuity (share of chunks not received in time for playback). The y-axis
indicates the discontinuity, while the x-axis indicates the time. The yellow line indicates the discontinuity for
peers that have successfully joined the master overlay. The blue line indicates the discontinuity for all peers
that joined the network. Figure 5c shows the latency for chunk distribution. The y-axis indicates the average
latency, while the y-axis indicates the time. Latency for peers that joined before and after the flash crowd
event is presented by the yellow line and the blue line, respectively. Figure 5b-c show that partial partnership
constraints preserves low discontinuity and latency

20268 Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

keep the same setup shown in Table 1, but we increase the share of free riders from 40%
to 50% (+10%). When we increase the number of free riders, we must decrease the share
of peers in the remaining classes in order to preserve the same amount of peers: class ‘hot’
(-2%), ‘warm’ (-5%), and ‘cold’ (-3%).

Figure 6a shows that the efficiency of the overlay remained stable throughout the experi-
ment. Figure 6b shows the number of free riders and cooperative peer joined in the overlay.
We observe that the partnership constraints guarantee higher stability among cooperative
peers, which may serve as an incentive for peer cooperation. The smooth decline in the
number of joined free riders in Fig. 6b impacts the discontinuity metric shown in Fig. 6c.
However, the latency for chunk distribution (not shown) remains very similar to the one
presented in Fig. 5c (i.e., negligible impact on latency).

5.2.2 Remarks

Partial Partnership Constraints is a simple approach that can increase the scalability of the
network. As a drawback, the partnership constraints are applied only between free riders and
cooperative peers. Since peers from the cold class can establish out-partnership only with
free riders, overlays having a small share of peers from the cold class may lead to low use of
the upload bandwidth. However, such findings lead us to the intermediary model presented
along the next section.

5.3 Full Partnership Constraints

Competition between free riders and cooperative peers for the same resources in the overlay
is not desirable, specially when dealing with live stream delivery. In order to avoid such
competition, we extend our Partnership Constraints approach to split the list of out-partners
of any given peer into two subsets:

– N high
out (p) contains high bandwidth out-partners;

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0

N
um

be
r

of
 p

ee
rs

 in
 o

ve
rla

y

Time (s)

Incoming
Joined

(a) (b) (c)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0

N
um

be
r

of
 p

ee
rs

 in
 o

ve
rla

y

Time (s)

Joined (Free Riders)
Joined (Cooperative)

 0

 2

 4

 6

 8

 10

 12

 14

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0

A
ve

ra
ge

 D
is

co
nt

in
ui

ty
 (

%
)

Time (s)

Free Riders (−σ=1.18)
Cooperatives (−σ=0.62)

Fig. 6 Performance of the partial partnership constraints for 50% of Free Riders. Figure 6a shows the num-
ber of peers in the overlay after receiving a flash crowd of 1,000 peers at time 350s. The x-axis indicates
time, while the y-axis indicates the number of peers in the overlay. Purple dots indicate the number of incom-
ing peers trying to join the overlay, while the green dots show the number of peers that successfully joined
the overlay. Figure 6b shows the number of free riders and cooperative peer that joined the overlay. partial
partnership constraints guarantee higher stability among cooperative peers. The smooth decline in the num-
ber of joined free riders impacts the discontinuity metric shown in Fig. 6c. Figure 6c presents the average
discontinuity over time (share of chunks not received in time for playback). The y-axis indicates the dis-
continuity, while the x-axis indicates the time. The red line indicates the discontinuity for cooperative peers
that have successfully joined the overlay. The green line indicates the discontinuity for free riders that have
successfully joined the overlay

20269Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

– N low
out (p) contains low bandwidth out-partners.

Splitting up the sets of out-partners allows more control over partnerships. The bootstrap
server can allow free riders to join the overlay immediately, even during flash crowds, with-
out taking the chance of compromising the stability of the overlay. This is possible because
the overlay becomes able to throttle the rate at which free riders (and peers with low upload
bandwidth) join the overlay in terms of the number of slots available on cooperative peers
participating in the overlay.

Whenever peers with high upload bandwidth try to join the overlay, N high
out (p) slots are

available regardless of the number of free riders also trying the join. In the (comfortable)
scenario that all N high

out (p) slots are full, Full Partnership Constraints (FPC) considers that
peers can disconnect one of their out-partners to make room for a new peer with higher
upload bandwidth. The disconnected peer may be in the set of high-cooperation out-partners
(N high

out (p)) or the set of low-cooperation out-partners (N low
out (p)), with the restriction that

the disconnected peer has lower upload bandwidth than the new peer. As more cooperative
peers join the overlay, they cooperate with additional slots for holding more peers, increas-
ing capacity in the overlay and allowing the overlay to grow. Although the disconnected
peer needs to find a new in-partner, we note a peer has Nin(p) in-partners, and will have
opportunities to find new ones.

Complementary, we also provide slots for low-cooperation peers inversely proportional
to the available bandwidth of the peer. This groups peers with high upload bandwidth
together and pulls them close to the source, while pushing free riders and peers with low
upload bandwidth to the edge of the overlay.

5.3.1 Setting up the full partnership constraints strategy

FPC may be configured with any number of classes and with different sizes for N high
out (p)

and N low
out (p) within each class. This allows FPC to be tailored to specific peer populations

or application requirements. In this work, we consider the four classes of peers and set sizes
in Table 2. Future work can investigate the effect of setting different class numbers for FPC.

Table 2 shows the classes of peers. The Hot class contains peers that have the highest
potential for cooperating to the overlay. Hot peers only establish partnerships with peers
from the hot and warm classes (defined by N

high
out (p) > 0 and N low

out (p) = 0). The Warm

Table 2 Classes of peers and output partnerships

PEER SET SIZES

CLASS N
high
out (p) N low

out (p) CONT. PEER BANDWIDTH

Hot > 0 = 0 High High upload

Warm > 0 > 0 High Average upload

Cold = 0 > 0 Low Low upload

Free R. = 0 = 0 Low Free riders

The peer class column indicates the level of chunk upload cooperation of a given peer p. The second column

indicates the size of the set of out-partners (number of slots) for high-cooperation peers (Nhigh
out (p)) and low-

cooperation peers (N low
out (p)). The peer contribution column (cont.) indicates whether a given peer q uses

out-partnership slots in N high
out (p) or N low

out (p) when q asks for partnership to p. Finally, peer bandwidth
column describes the population of peers expected in each class

20270 Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Fig. 7 Full Partnership Constraints. Hot peers (high upload bandwidth) are allowed to accept out-partners
from classes hot and warm. Warm peers (average upload bandwidth) are allowed to accept peers from any

class as out-partners, but hot and warm out-partners of a warm peer p are placed in N high
out (p) set, while cold

and free riders out-partners are placed in N low
out (p) set. Cold peers (low upload bandwidth) are allowed to

establish out-partnerships only to cold peers and free riders

class contains peers with average potential for cooperating to the overlay. Warm peers can
establish partnerships with peers from any class. The Cold class contains peers with low
potential for cooperating to the overlay. Cold peers can only establish partnerships with
other cold peers and free riders (recall that free riders don’t cooperate to the overlay and,
thus, do not have out-partners). Figure 7 is a graphical representation of Table 2.

5.3.2 Experimental setup

The setup used along the set of experiments presented here is shown in Tables 3 and 4. We
consider four classes of peers with different upload bandwidths. Free riders correspond to
50% of all peers, allowing us to emulate resource-constrained scenarios. We compare the
Full Partnership Constraints strategy to two other strategies for building overlays: i) classic-
partnership sets approach; and ii) naive Full Partnership Constraints.

The classic-partnership sets approach (classic for short) count only on a traditional
single set of out-partners and doesn’t provide partnership constraints to peers. On the other
hand, the naive Full Partnership Constraints (Naive-FPC or N-FPC) employs a simplified
version of the Full Partnership Constraints (FPC) strategy where out-partners are divided
into the sets of high-cooperation peers and low-cooperation peers, but partnerships are not
constrained (i.e., all cooperative peers can establish partnerships with peers in any other
class and are classified as warm peers described in Table 2). The difference between classic

Table 3 Distribution of peers

Peer Class Upload (Mbps) Share

Hot 4.0 9%

Warm 2.5 17%

Cold 1.5 24%

Free rider 0.0 50%

20271Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Table 4 Configuration of classes in terms of the number of high-cooperation out-partners (Nhigh
out (p)), low-

cooperation out-partners (N low
out (p)), and the total number of out-partners (Nout(p))

Peer FPC Naive-FPC Classic

Class N
high
out (p) N low

out (p) N
high
out (p) N low

out (p) Nout(p)

Hot 46 0 26 20 46

Warm 18 22 20 20 40

Cold 0 38 18 20 38

Free R. 0 0 0 0 0

approach and naive-FPC allows us to qualify the impact of splitting the set of out-partners
and isolating free riders from cooperative peers versus one approach without out-partner
separation. Since FPC may be combined with other techniques, (for instance with our
baseline presented in Section 5.1), we do not improve our classic approach in order to
understand the real impact of the splitting the set of out-partners. Moreover, the difference
between naive-FPC and FPC quantifies the impact of the partnership constraints across peer
classification.

5.3.3 Experiments

We consider three overlay setups, according to the relation of in-partners and out-partners:

– balanced overlays: overlays where the number of in-partners is approximately equal
to the number of out-partners (r = ∑

p Nin(p)/
∑

p Nout(p) ≈ 1.0);
– conservative overlays: number of in-partners is (approximately) 1.5 times the number

of out-partners (r = ∑
p Nin(p)/

∑
p Nout(p) ≈ 1.5);

– aggressive overlays: number of in-partners is (approximately) 0.5 times the number of
out-partners (r = ∑

p Nin(p)/
∑

p Nout(p) ≈ 0.5).

a) Balanced overlay: number of in-partners approximately equal to the number of out-
partners (r ≈ 1.0)

Here, we consider a balanced overlay where the total number of in-partners is (approxi-
mately) equal to the total number of out-partners. In this configuration, we setup Nin(p) =
20 for all peers and Nout(p) as shown in Table 4.

Figure 8a shows the average number of incoming peers (blue) and the average number of
peers that have successfully joined the overlay. The classic approach joins (approximately)
800 peers in the overlay with severe fluctuation in the number of joined peers. On the
other hand, the Naive-FPC and the FPC support 950 peers in the overlay, with negligible
fluctuation.

Figure 8b presents the average discontinuity, and we can see that Naive-FPC and FPC
achieve efficient and stable media distribution (for this scenario), while the classic approach
(green) leads to high discontinuity (just a small set of peers reproduce the media, and they
do with degraded quality of experience).

Figure 8c presents the latency for the distribution of chunks, and we notice the classic
approach incurring in high latency for distributing the video. In summary, the competition

20272 Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

N
um

be
r

of
 p

ee
rs

 in
 o

ve
rla

y

Time (s)

Incoming
Classic
N−FPC

FPC

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

 0

 5

 10

 15

 20

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00

A
ve

ra
ge

 d
is

co
nt

in
ui

ty
 (

%
)

Time (s)

Classic (−σ=3.88)
N−FPC (−σ=0.50)

FPC (−σ=0.61)

 0

 5

 10

 15

 20

 25

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00

A
ve

ra
ge

 la
te

nc
y

(s
)

Time (s)

Classic (−σ=5.16)
N−FPC (−σ=0.66)

FPC (−σ=0.52)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

N
um

be
r

of
 p

ee
rs

 in
 o

ve
rla

y

Time (s)

Incoming
Classic
N−FPC

FPC

 0

 5

 10

 15

 20

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00

A
ve

ra
ge

 d
is

co
nt

in
ui

ty
 (

%
)

Time (s)

Classic (−σ=0.71)
N−FPC (−σ=0.46)

FPC (−σ=0.41)

 0

 5

 10

 15

 20

 25

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00

A
ve

ra
ge

 la
te

nc
y

(s
)

Time (s)

Classic (−σ=0.61)
N−FPC (−σ=0.50)

 FPC (−σ=0.40)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

N
um

be
r

of
 p

ee
rs

 in
 o

ve
rla

y

Time (s)

Incoming
Classic
N−FPC

FPC

 0

 5

 10

 15

 20

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00

A
ve

ra
ge

 d
is

co
nt

in
ui

ty
 (

%
)

Time (s)

Classic (−σ=5.48)
N−FPC (−σ=4.49)

FPC (−σ=0.53)

 0

 5

 10

 15

 20

 25

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00

A
ve

ra
ge

 la
te

nc
y

(s
)

Time (s)

Classic (−σ=4.91)
N−FPC (−σ=4.85)

FPC (−σ=0.53)

Fig. 8 Performance of the classic approach versus Naive-FPC versus FPC (Full Partnership Constraints).
Figure 8a-c show the scenario for balanced overlays (r ≈ 1.0). Figure 8d–f show the same analysis for a
conservative overlay (r ≈ 1.5). Figure 8g–i show the scenario for aggressive (r ≈ 0.5). Figure 8a, d, and g
show the number of peers in the overlay after receiving a flash crowd of 1,000 peers. The x-axis indicates
time, while the y-axis indicates the number of peers in the overlay. Purple dots indicate the number of
incoming peers trying to join the overlay. Figure 8b, e, and h compare the average discontinuity (share of
chunks not received in time for playback). The y-axis indicates the discontinuity, while the x-axis indicates
the time. Figure 8c, f, and i show the latency for chunk distribution. The y-axis indicates the average latency,
while the y-axis indicates the time

between cooperative and uncooperative peers for out-partnerships disrupts the P2P overlay
after the flash crowd.

b) Conservative overlay: number of in-partners approximately equal to 1.5 times the
number of out-partners (r ≈ 1.5)

Now, we focus on a conservative overlay where the number of in-partners is 1.5 times the
number of out-partners. We consider the number of in-partners Nin(p) = 30 for all peers
and Nout(p) we keep unchanged (Table 4).

Figure 8d shows that all three strategies reach around 950 joined peers (however, the
classic approach experiences higher fluctuations than the other two). Naive-FPC and FPC
present more stability in the overlay because they prioritize newcomer peers with more
upload bandwidth to join the overlay. Such peers have more potential for cooperating to the
overlay, supporting the distribution of chunks, leading to higher aggregate upload bandwidth
in the overlay.

20273Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Figure 8e shows the average discontinuity. We observe all strategies providing discon-
tinuity below the acceptable threshold of 4%, while FPC presents the lowest discontinuity
among the evaluated strategies. Figure 8f shows the average latency. FPC provides smaller
latency for chunk distribution, while Naive-FPC and the classic approach show similar
results. In summary, the Naive-FPC and FPC are also able to improve the live streaming
delivery in conservative overlays.

c) Aggressive overlay: number of in-partners approximately half the number of out-
partners (r ≈ 0.5)

Now, we turn our attention to an aggressive overlay where the number of in-partners is
half the number of out-partners (preserving the number of in-partners Nin(p) = 20). We
consider 40% of free riders. Remaining classes are updated to hot=11%, warm=22%, and
cold=27%. The configuration of partnerships is presented in Table 5.

Figure 8g presents the number of peers that have joined the overlay (y-axis) versus
the time in the x-axis. FPC strategy builds a more stable overlay (red), while the classic
approach and the Naive-FPC fail to incorporate several peers when time is > 500s. In other
words, the FPC strategy is less affected by flash crowds.

Figure 8h plots the average discontinuity (y-axis) versus the time (x-axis). It indicates
that only the FPC strategy is able to keep low discontinuity. Moreover, Fig. 8i plots the
latency for chunks distribution (y-axis) versus time (x-axis), showing that FPC also keeps
low latency, indicating that the strategy is able to support more free riders than the Naive-
FPC and the classic approach.

5.3.4 Remarks

Full Partnership Constraints improves on our basic Partnership Constraints by enforcing
stricter rules for partnership establishment. Our approach of disconnecting a peer in favor
of other peers with more upload bandwidth ensures the overlay always accepts (and quickly
integrates) these peers. The constraints pull high-contribution peers close to the source,
and push low-contribution and free rider peers to the edge of the overlay, which improves
distribution efficiently.

5.4 Implementing full partnership constraints in dynamic environments

The previous section discussed the Full Partnership Constraints strategy assuming the
upload bandwidth of each peer is known and static (i.e., does not change over time).

Table 5 Configuration of classes in terms of the number of high-cooperation out-partners (Nhigh
out (p)), low-

cooperation out-partners (N low
out (p)), out-partners (Nout(p)) considering the number of in-partners Nin(p) =

20 and the ratio r ≈ 0.5

Peer FPC Naive-FPC Classic

Class N
high
out (p) N low

out (p) N
high
out (p) N low

out (p) Nout(p)

Hot 92 0 52 40 92

Warm 36 44 40 40 80

Cold 0 76 36 40 76

Free R. 0 0 0 0 0

20274 Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

However, real networks require strategies for classifying peers on-the-fly, as peer upload
bandwidth may change over time due to factors such as cross traffic or network congestion.
Even when peer report their available upload bandwidth, the effective ability to distribute
chunks may vary according to several practical issues (Internet Service Provider, number of
network applications running at the peer or in the same home, among others).

We present the Peer Classification for Partnership Constraints (2PC) to classify peers
dynamically (on-the-fly). After any peer joins the network, the strategy monitors the coop-
eration of the peer to the overlay. Peers climb up the hierarchy of classes by contributing
more to the network. Periodically, peers forward a report stating their latest cooperation (in
terms of chunks) to the bootstrap server. The bootstrap server periodically reclassifies peers
using information in the reports. In order to provide all peers with the ability to contribute
to the overlay, the proposed strategy doesn’t restrict partnerships before a peer is classified.

The reclassification of peers may involve disconnecting of some partners. In order to
minimize the risk of disrupting the overlay, the strategy only reclassifies peers in to a neigh-
boring class at each round (e.g., reclassify a hot peer as warm, or a warm peer as cold).
The routine for classifying peers is shown in Algorithm 1, while Table 6 presents the algo-
rithm’s elements. The routine’s input is a list of active peers in the P2P system, maintained
by bootstrap server. To give the system enough time to compute the cooperation of peers
with acceptable accuracy, the routine only performs the reclassification after the peer has
been in the system for at least one complete reclassification period (line 3).

Periodically, the bootstrap server sorts peers by decreasing order of cooperation in terms
of chunks (line 4). The bootstrap server iterates over all peers, quantifying their cooperation
(line 6), and checking whether the peer needs to be reclassified (lines 7 and 15). To avoid
degenerating the overlay due to peer misclassification or skewed peer populations, the strat-
egy limits the share of peers able to be reclassified in each iteration to a threshold Γ (c)

(line 9). Finally, the population in each class c is limited by a population limit U(c) (line 9).
It is important to have the ratio r ≥ 1.0 in order to avoid aggressive overlays, defined in
Section 4. Peer reclassification occurs periodically every μ seconds and, as a result, the
routine’s output is a list of new N

high
out (p) and N low

out (p) configurations for each class of peers.

20275Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Table 6 Parameters and Inputs of Algorithm 1

Parameter/Input Description

additions[c] Number of peers reclassify to class c in the current iteration.

active List of active peers in the P2P system.

sorted List of active peers sorted by their chunk contribution.

Γ (c) Share of peers able to be promoted or demoted.

population(c) Size of peer population in the class c.

U(c) Limit of shared peers per class.

Table 6 helps us to better understand the elements of the Algorithm 1. The variable
additions[c] handles the number of peers that can be reclassified per iteration, limited by
the parameter Γ (c) (Algorithm 1, line 9). The variable population(c) handles the number
of peers in each class per iteration, limited by the parameter U(c) (Algorithm 1, line 9).
Finally, active and sorted are auxiliary lists of peers.

5.4.1 Experimental setup

We evaluate the 2PC using the same four classes of peers, according to Table 7. In addition,
we setup Γ (c) = 5% (i.e., 5% of all cooperative peers) for all classes, and μ = 120
seconds (i.e., 2PC iteration time). Values of Γ (c) and μ are combined to limit the number
of partnership disconnection caused by peer reclassification.

Arriving peers firstly join the warm class, because it provides weak constraints for out-
partners: peers in the warm class can establish out-partnerships with peers from any other
class, making the network responsible for reclassifying those peers.

Figure 9a shows that the 2PC (red) keeps the overlay stable during the experiment, even
in the presence of flash crowds. Moreover, Fig. 9b–c show that the average discontinuity
and latency (for distribution of chunks) also remain stable, with a slight increasing shortly
after the flash crowd. However, we notice a quick recovery. (Recall that results using the
same setup without Full Partnership Constraints in dynamic environments are presented in
Fig. 8).

We also evaluate the classification algorithm. Figure 9d shows the number of peers in
different classes over time. The flash crowd starts after 400s of operation, and all peers

Table 7 Experimental Setup

Peer Upload Population Set Sizes

Class (Mbps) Share Limit U N
high
out (p) N low

out (p)

Hot 4.0 9% 15% 46 0

Warm 2.5 17% - 18 22

Cold 1.5 24% 40% 0 38

Free R. 0.0 50% - 0 0

Number of in-partners (Nin(p)) equal to 20 and ratio r ≈ 1.0 (r = ∑
p Nin(p)/

∑
p Nout(p)). In this table,

the upload bandwidth distribution and peer share are similar the Table 3, and ‘Set Sizes’ column is similar
the Table 4. Column ‘Class Population’ define the limit of peer in classes Hot and Cold. Warm and Free rider
classes are free

20276 Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 0

 200

 400

 600

 800

 1000

 1200

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0
 1

40
0

 1
60

0
 1

80
0

N
um

be
r

of
 p

ee
rs

 in
 o

ve
rla

y

Time (s)

Incoming
Joined

(a) (b) (c)

(d) (e) (f)

 0

 5

 10

 15

 20

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0
 1

40
0

 1
60

0
 1

80
0

A
ve

ra
ge

 d
is

co
nt

in
ui

ty
 (

%
)

Time (s)

2PC (−σ=0.96)

 0

 5

 10

 15

 20

 25

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0
 1

40
0

 1
60

0
 1

80
0

A
ve

ra
ge

 la
te

nc
y

(s
)

Time (s)

2PC (−σ=1.49)

 0

 100

 200

 300

 400

 500

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0
 1

40
0

 1
60

0
 1

80
0

N
um

be
r

of
 p

ee
rs

 in
 c

la
ss

es

Time (s)

 Cold
Warm

 Hot

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0
 1

40
0

 1
60

0
 1

80
0N

um
be

r
of

 p
ee

rs
 in

 c
ol

d
cl

as
s

Time (s)

1.5 Mb/s
2.5 Mb/s
4.0 Mb/s

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0
 1

40
0

 1
60

0
 1

80
0N

um
be

r
of

 p
ee

rs
 in

 h
ot

 c
la

ss

Time (s)

1.5 Mb/s
2.5 Mb/s
4.0 Mb/s

Fig. 9 Performance of 2PC (Peer Classification for Partnership Constraints). Figure 9a–c show the perfor-
mance of 2PC for balanced overlays (r ≈1) of configuration from Table 7 and Nin(p) = 20 for all peers. In
this case, the algorithm performance can be compared with the classic approach, Naive-FPC and FPC shown
in Fig. 8a–c. Figure 9a shows the number of peers in the overlay after receiving a flash crowd of 1,000 peers.
The x-axis indicates time, while the y-axis indicates the number of peers in the overlay. Purple dots indicate
the number of incoming peers trying to join the overlay, while red dots indicate the number of joined peers.
Figure 9b shows the average discontinuity (share of chunks not received in-time for playback). The y-axis
indicates the discontinuity, while the x-axis indicates the time. Figure 9c shows the latency for chunk distri-
bution. The y-axis indicates the average latency, while the x-axis indicates the time. Figure 9d–f show the
Class Inference. Figure 9d shows the peer distribution in each class throughout the experiment, limited by U
parameter. Figure 9e shows the peer population in Cold Class per peer upload-bandwidth. Figure 9f shows
the peer population in Hot Class per peer upload-bandwidth

quickly join the overlay in the warm class. The network systematically reclassifies peers to
neighbor classes (hot/warm/cold) at each iteration in order to improve the topology of the
overlay.

In order to audit the reclassification routine, we present Fig. 9e–f. They show the number
of peers in classes cold and hot over time for different peer upload bandwidths. We observe
that the reclassification algorithm concentrates peers having bandwidth equal to 1.5Mbps in
class cold, and peers with bandwidth equal to 4.0Mbps in class hot. So far, the experiments
have assumed the upload bandwidth with only three possibilities: 1.5Mbps; 2.5Mbps; or,
4.0Mbps. Now, we evaluate the 2PC with upload bandwidth uniformly distributed between
1.0Mbps–3.5Mbps.

Table 8 indicates the setup of out-partners for each dynamic class. We compare the
2PC to the classic approach (strategy that doesn’t isolate out-partnerships nor employs
partnership constraints).

Figure 10a shows that 2PC is able to incorporate a significant share of peers, while
maintaining low discontinuity and latency (shown in Fig. 10b–c). On the other hand, the
classic approach fails to serve several peers (and those peers receiving chunks show poor
quality of experience to users). Figure 10d–f show that the proposed strategy successfully
reclassifies peers into the proper class of cooperation.

20277Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Table 8 2PC Experiment Configuration on a random upload bandwidths setup

SET SIZES

Peer Upload Population 2PC Classic

Class (Mbps) Limit U N
high
out (p) N low

out (p) Nout(p)

Hot 3.0 - 3.5 15% 46 0 46

Warm 2.0 - 2.5 - 18 22 40

Cold 1.0 - 1.5 40% 0 38 38

Free R. 0.0 - 0 0 0

Different from the Table 7, in this case the upload bandwidth for all peers are select by a normal random
distribution, shown in column ‘Upload(Mbps)’. The other columns are similar to the respective columns in
Table 4 (for classic approach) and Table 7 (for 2PC)

5.4.2 Remarks

Peer Classification for Partnership Constraints runs at the bootstrap server and (re)classifies
peers dynamically using periodic contribution reports. While 2PC and peer reclassifica-
tion can induce “partnership churn” in the P2P overlay as reclassified peers may need to

 0

 200

 400

 600

 800

 1000

 1200

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

N
um

be
r

of
 p

ee
rs

 in
 o

ve
rla

y

Time (s)

Incoming
Classic

2PC
 0

 5

 10

 15

 20

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0
 1

40
0

 1
60

0
 1

80
0

A
ve

ra
ge

 d
is

co
nt

in
ui

ty
 (

%
)

Time (s)

Classic (−σ=1.88)
2PC (−σ=0.54)

 0

 5

 10

 15

 20

 25

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0
 1

40
0

 1
60

0
 1

80
0

A
ve

ra
ge

 la
te

nc
y

(s
)

Time (s)

Classic (−σ=4.48)
2PC (−σ=0.53)

 0

 100

 200

 300

 400

 500

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0
 1

40
0

 1
60

0
 1

80
0

N
um

be
r

of
 p

ee
rs

 in
 c

la
ss

es

Time (s)

 Cold
Warm

 Hot

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0
 1

40
0

 1
60

0
 1

80
0N

um
be

r
of

 p
ee

rs
 in

 c
ol

d
cl

as
s

Time (s)

1.0−2.0 Mbps
2.0−2.5 Mbps
2.5−3.5 Mbps

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

 1
20

0
 1

40
0

 1
60

0
 1

80
0N

um
be

r
of

 p
ee

rs
 in

 h
ot

 c
la

ss

Time (s)

1.0−2.0 Mbps
2.0−2.5 Mbps
2.5−3.5 Mbps

(a) (b) (c)

(d) (e) (f)

Fig. 10 Performance of the classic approach versus 2PC Class Inference on a random upload bandwidth
distribution setup. Figure 10a–c show the performance of the classic approach versus 2PC for balanced
overlays (r ≈ 1.0) of configurations from Table 8 and Nin(p) = 20 for all peers. Figure 10a shows
the number of peers in the overlay after receiving a flash crowd of 1,000 peers. The x-axis indicates time,
while the y-axis indicates the number of peers in the overlay. Purple dots indicate the number of incoming
peers trying to join the overlay, while red and green dots indicate the number of joined peers. Figure 10b
shows the average discontinuity (share of chunks not received in-time for playback). The y-axis indicates
the discontinuity, while the x-axis indicates the time. Figure 10c shows the latency for chunk distribution.
The y-axis indicates the average latency, while the x-axis indicates the time. Figure 10d–f show the 2PC
Class Inference. Figure 10d shows the peer distribution in each class throughout the experiment, limited by U
parameter. Figure 10e shows the peer population in Cold Class per peer upload-bandwidth. Figure 10f shows
the peer population in Hot Class per peer upload-bandwidth

20278 Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

terminate some partnerships, this churn is small compared to the intrinsic churn in the over-
lay (peers are frequently changing partners). We find that only around 5% of peers are
reclassified every 120 seconds in our experiments (and this fraction is bounded by Γ).
The overlay is mostly unaffected by reclassification, and peers that are reclassified need to
reestablish only a fraction of their partnerships, and can usually do so without experiencing
discontinuity. The dynamic overlay organization by the 2PC algorithm was evaluated in the
work [8]. The authors analyzed the migration of cooperative peers close to the server, while
free riders were pushed to the edge of the overlay during a 2PC execution. Overall, we find
2PC allows deployment of Full Partnership Constraints in real scenarios, with significant
overlay efficiency improvements.

6 Conclusion

In this work, we present a comprehensive study on strategies for building and managing the
overlay in P2P live streaming systems. Several ideas and premises are incrementally tested
and evaluated, until they are formalized in the combination of Full Partnership Constraints
and Peer Classification for Partnership Constraints. The algorithm dynamically classifies
peers according into a set of classes to eliminate competition between high-cooperation,
low-cooperation, and free-riding peers. By eliminating such competition, the system ensures
that chunks are efficiently distributed in the network. The resulting P2P overlay can, simul-
taneously, accept a large number of cooperative peers and free riders without compromising
the distribution of chunks, even during flash crowds. Although the proposed strategy is
not specifically designed for handling flash crowds, it builds robust topologies that per-
form well. The experiments in PlanetLab consider various scenarios with low peer upload
bandwidth, a large share of free riders, and flash crowds.

In summary, the strategies proposed in this work build effective and resilient overlays,
have simple implementation, and are compatible with many other techniques already pro-
posed in the literature for managing P2P overlays. As future work, we intend to study how
to dynamically set the number of peer classes and the size of partnership sets to further
increase overlay distribution efficiency, and combine these strategies to ones presented by
the traditional literature.

Acknowledgments This research was partially funded by the CNPq (Conselho Nacional de Desenvolvi-
mento Cientı́fico e Tecnológico) grant 303933/2017-8, CAPES (Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior), and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais)
grant APQ-02145-18.

References

1. Adhikari VK, Guo Y, Hao F, Varvello M, Hilt V, Steiner M, Zhang ZL (2012) Unreeling Netflix:
Understanding and improving multi-CDN movie delivery. In: Proceedings of IEEE INFOCOM (2012),
pp 1620–1628

2. Budhkar S, Tamarapalli V (2019) An overlay management strategy to improve qos in cdn-p2p live
streaming systems. Peer-to-peer networking and applications

3. Castro M, Druschel P, Kermarrec A, Nandi A, Rowstron A, Singh A (2003) SplitStream: High-
bandwidth multicast in cooperative environments. In: Proceedings of the nineteenth ACM symposium
on operating systems principles, SOSP ’03. ACM, New York, pp 298–313

4. Chen Y, Zhang B, Chen C, Dah MC (2014) Performance modeling and evaluation of peer-to-peer live
streaming systems under flash crowds. IEEE/ACM Trans Netw 22(4):1106–1120

20279Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

5. Chung TY, Lin O (2011) A batch join scheme for flash crowd reduction in IPTV Systems. In:
Proceedings of IEEE parallel and distributed systems, ICPADS (2011). IEEE, pp 823–828

6. Cisco (2019) Cisco visual networking index: Forecast and trends, 2017–2022 Technical report
7. Cohen B (2003) Incentives build robustness in bitTorrent. In: Workshop on economics of peer-to-peer

systems (2003)
8. dos Santos AC, Silva CM, Miguel EC (2020) Overlay Convergence Analysis in P2P Networks: An

Assessment of the 2PC Algorithm. In: 2020 International Conference on Innovation and Intelligence
for Informatics, Computing and Technologies (3ICT), pp 1–6. https://doi.org/10.1109/3ICT51146.2020.
9311950

9. Felber P, Biersack E (2005) Distribution: Cooperative content scalability through self-organization. In:
Self-star properties in complex information systems (2005). Springer, pp 343–357

10. Fortuna R, Leonardi E, Mellia M, Meo M, Traverso S (2010) QoE in pull based P2P-TV systems overlay
topology design tradeoffs. In: Proceedings of IEEE P2P (2010)

11. Gonçalves G, Cunha I, Vieira A, Almeida J (2014) Predicting the level of cooperation in a peer-to-peer
live streaming application. Multimedia Systems:1–20

12. Guarnieri T, Cunha I, Almeida JM, Drago I, Vieira AB (2017) Characterizing QoE in large-scale live
streaming. In: Proceedings IEEE Globecom, Singapore

13. Guerraoui R, Huguenin K, Kermarrec A, Monod M, Prusty S (2010) LiFTinG lightweight freerider-
tracking in gossip. In: ACM/IFIP/USENIX international conference on middleware

14. Jain S, Kumar A, Mandal S, Ong J, Poutievski L, Singh A, Venkata S, Wanderer J, Zhou J, Zhu M, Zolla
J, Hölzle U, Stuart S, Vahdat A (2013) B4: Experience with a globally-deployed software defined WAN.
SIGCOMM Comput Commun Rev 43(4):3–14

15. Kumar R, Liu Y, Ross K (2007) Stochastic fluid theory for P2P streaming systems. In: Proceedings of
IEEE INFOCOM (2007), pp 919–927

16. Li B, Keung GY, Xie S, Liu F, Sun Y, Yin H (2008) An empirical study of flash crowd dynamics in a
P2P-based live video streaming system. In: Proceedings of IEEE GLOBECOM (2008), pp 1–5

17. Li B, Xie S, Qu Y, Keung GY, Lin C, Liu J, Zhang X (2008) Inside the new coolstreaming principles,
measurements and performance implications. In: Proceedings of IEEE INFOCOM (2008)

18. Liao X, Jin H, Liu Y, Ni LM, Deng D (2006) AnySee: Peer-to-peer live streaming. In: Proceedings of
IEEE INFOCOM (2006), pp 1–10

19. Liu F, Li B, Zhong L, Li B, Jin H, Liao X (2012) Flash crowd in P2P live streaming systems fundamental
characteristics and design implications. EEE Trans Parallel Distrib Syst 23(7):1227–1239

20. Liu F, Li B, Zhong L, Li B, Niu D (2009) How P2P live streaming systems scale over time under a flash
crowd? In: Proceedings of the 8th international conference on peer-to-peer systems, IPTPS’09, pp 5–5,
Berkeley, CA, USA. USENIX Association

21. Lobb RJ, Silva AP, Leonardi E, Mellia M, Meo M (2009) Adaptive Overlay Topology for Mesh-based
P2P-TV Systems. In: Proceedings of the 18th international workshop on network and operating systems
support for digital audio and video (2009), NOSSDAV ’09. ACM, New York, pp 31–36

22. Locher T, Meier R, Schmid S, Wattenhofer R (2007) Push-to-pull peer-to-peer live streaming. In: Pelc
A (ed) Proceedings of distributed computing: 21st international symposium (2007). Springer, Berlin,
pp 388–402

23. Locher T, Meier R, Wattenhofer R, Schmid S (2009) Robust live media streaming in swarms. In:
NOSSDAV 2009. ACM, pp 121–126

24. Magharei N, Rejaie R (2009) PRIME: Peer-to-peer receiver-driven mesh-based streaming. IEEE/ACM
Trans Netw 17(4):1052–1065

25. Magharei N, Rejaie R, Rimac I, Hilt V, Hofmann M (2014) ISP-friendly live P2P streaming. IEEE/ACM
Trans Networking 22(1):244–256

26. Oliveira J, Cunha I, Miguel EC, Rocha MV, Vieira AB, Campos SV (2013) Can peer-to-peer live
streaming systems coexist with free riders? In: Proceedings of IEEE P2P (2013). IEEE, pp 1–5

27. Oliveira R, Viana J, Vieira AB, Rocha MV, Campos SV (2013) TVPP: A research oriented P2P live
streaming system. In: SBRC Salão de Ferramentas (2013)

28. Payberah AH, Dowling J, Haridi S (2011) GLive: The gradient overlay as a market maker for mesh-
based P2P live streaming. In: Proceedings of IEEE parallel and distributed computing, ISPDC (2011),
pp 153–162

29. Payberah A, Dowling J, Rahimian F, Seif H (2012) Distributed optimization of P2P live streaming
overlays. Special Issue on Extreme Distributed Systems: From Large Scale to Complexity 94(8):621–647

30. Piatek M, Krishnamurthy A, Venkataramani A, Yang R, Zhang D, Jaffe A (2010) Contracts: Practi-
cal contribution incentives for P2P live streaming. In: Proceedings of the 7th conference on networked
systems design and implementation USENIX (2010), NSDI’10. USENIX Association, Berkeley, pp 6–6

20280 Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

31. Piatek M, Madhyastha HV, John JP, Krishnamurthy A, Anderson T (2009) Pitfalls for ISP-friendly p2p
design. Avaliable at https://homes.cs.washington.edu/tom/support/pitfalls.pdf

32. PlanetLab (2009) An open platform for developing, deploying, and accessing planetary-scale services.
http://www.planet-lab.org/

33. Ren D, Li YT, Chan SH (2008) On reducing mesh delay for peer-to-peer live streaming. In: Proceedings
of IEEE INFOCOM (2008)

34. Rückert J, Richerzhagen B, Lidanski E, Steinmetz R, Hausheer D (2015) TOPT: Supporting flash frowd
events in hybrid overlay-based live streaming. In: Proceedings of IEEE IFIP networking conference
(2015), pp 1–9

35. Schlinker B, Kim H, Cui T, Katz-Bassett E, Madhyastha HV, Cunha I, Quinn J, Hasan S, Lapukhov P,
H. Zeng. (2017) Engineering egress with edge fabric: Steering oceans of content to the world. ACM,
New York, pp 418–431

36. Shahriar I, Qiu D, Jaumard B (2017) Modeling of free riders in P2P live streaming systems. In: 2017
international conference on computing, networking and communications (ICNC), pp 729–734

37. Silva AP, Leonardi M, Mellia E, Meo M (2008) A bandwidth-aware scheduling strategy for P2P-TV
systems. In: Eighth international conference on peer-to-peer computing (2008), pp 279–288

38. Simoni G, Roverso R, Montresor A (2014) RankSlicing: A decentralized protocol for supernode
selection. In: Proceedings of IEEE P2P (2014)

39. Traverso S, Abeni L, Birke R, Kiraly C, Leonardi E, Lo Cigno R, Mellia M (2012) Experimental com-
parison of neighborhood filtering strategies in unstructured P2P-TV systems. In: Proceedings of IEEE
P2P (2012), pp 13–24

40. Traverso S, Abeni L, Birke R, Kiraly C, Leonardi E, Lo Cigno R, Mellia M (2015) Neighborhood
filtering strategies for overlay construction in P2P-TV systems design and experimental comparison.
IEEE/ACM Transactions on Networking (TON) 23(3):741–754

41. Ullah I, Doyen G, Gaı̈ti D (2013) Towards user-aware peer-to-peer live video streaming systems. In:
Proceedings of IFIP/IEEE international symposium on integrated network management (2013). IEEE,
pp 920–926

42. Venkataraman V, Yoshida K, Francis P (2006) Chunkyspread: Heterogeneous unstructured tree-based
peer-to-peer multicast. In: Proceedings of the 2006 IEEE international conference on network protocols,
pp 2–11

43. Wichtlhuber M, Richerzhagen B, Ruckert J, Hausheer D (2014) TRANSIT: Supporting transitions in
peer-to-peer live video streaming. In: Proceedings of IEEE IFIP networking (2014)

44. Wu H, Jiang H, Liu J, Sun Y, Li J, Li Z (2011) How P2P live streaming systems scale quickly under
a flash crowd? In: 30th IEEE international performance computing and communications conference,
pp 1–8

45. Wu H, Liu J, Jiang H, Sun Y, Li J, Li Z (2012) Bandwidth-aware peer selection for P2P live stream-
ing systems under flash crowds. In: Proceedings of IEEE performance computing and communications
conference, IPCCC (2012), pp 360–367

46. Yang P, Xu L (2010) On tradeoffs between cross-ISP P2P traffic and P2P streaming performance. In:
Proceedings of IEEE GLOBECOM (2010), pp 1–6

47. Yap K, Motiwala M, Rahe J, Padgett S, Holliman M, Baldus G, Hines M, Kim T, Narayanan A, Jain
A, Lin V, Rice C, Rogan B, Singh A, Tanaka B, Verma M, Sood P, Tariq M, Tierney M, Trumic D,
Valancius V, Ying C, Kallahalla M, Koley B, Vahdat A (2017) Taking the edge off with espresso: scale,
reliability and programmability for global internet peering. ACM, New York, pp 432–445

48. Zhao B, Lui J, Chiu D (2009) Exploring the optimal chunk selection policy for data-driven P2P streaming
systems. In: Proceedings of IEEE P2P (2009). IEEE, pp 271–280

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

20281Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Affiliations

Eliseu C. Miguel1 ·Cristiano M. Silva2 · Fernando C. Coelho3 · Ítalo F. S. Cunha3 ·
Sérgio V. A. Campos3

Cristiano M. Silva
cristiano@ufsj.edu.br

Fernando C. Coelho
fccoelho@dcc.ufmg.br

Ítalo F. S. Cunha
cunha@dcc.ufmg.br

Sérgio V. A. Campos
scampos@dcc.ufmg.br

1 Departamento de Ciência da Computação (DCC/UNIFAL-MG), Universidade Federal de Alfenas,
Alfenas, Brazil

2 Departamento de Tecnologia (DTECH/UFSJ), Universidade Federal de São João del Rei,
São João del Rei, Brazil

3 Departamento de Ciência da Computação (DCC/UFMG), Universidade Federal de Minas Gerais,
Minas Gerais, Brazil

20282 Multimedia Tools and Applications (2021) 80:20255–20282

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1.

2.

3.

4.

5.

6.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center
GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers
and authorised users (“Users”), for small-scale personal, non-commercial use provided that all
copyright, trade and service marks and other proprietary notices are maintained. By accessing,
sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of
use (“Terms”). For these purposes, Springer Nature considers academic use (by researchers and
students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and
conditions, a relevant site licence or a personal subscription. These Terms will prevail over any
conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription (to
the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of
the Creative Commons license used will apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may
also use these personal data internally within ResearchGate and Springer Nature and as agreed share
it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not otherwise
disclose your personal data outside the ResearchGate or the Springer Nature group of companies
unless we have your permission as detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial
use, it is important to note that Users may not:

use such content for the purpose of providing other users with access on a regular or large scale

basis or as a means to circumvent access control;

use such content where to do so would be considered a criminal or statutory offence in any

jurisdiction, or gives rise to civil liability, or is otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association

unless explicitly agreed to by Springer Nature in writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a

systematic database of Springer Nature journal content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a
product or service that creates revenue, royalties, rent or income from our content or its inclusion as
part of a paid for service or for other commercial gain. Springer Nature journal content cannot be
used for inter-library loans and librarians may not upload Springer Nature journal content on a large
scale into their, or any other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not
obligated to publish any information or content on this website and may remove it or features or
functionality at our sole discretion, at any time with or without notice. Springer Nature may revoke
this licence to you at any time and remove access to any copies of the Springer Nature journal content
which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or
guarantees to Users, either express or implied with respect to the Springer nature journal content and
all parties disclaim and waive any implied warranties or warranties imposed by law, including
merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published
by Springer Nature that may be licensed from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a
regular basis or in any other manner not expressly permitted by these Terms, please contact Springer
Nature at

onlineservice@springernature.com

mailto:onlineservice@springernature.com

