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Abstract
We present a method for establishing confidence in the de-

cisions of an autonomous car which accounts for errors not

only in control but also in perception. The key idea is

that the controller generates a certificate, which is a kind

of proof that its interpretation of the scene is accurate and

its proposed action is safe. Checking the certificate is faster

and simpler than generating it, which allows for a monitor

that comprises a much smaller trusted base than the sys-

tem as a whole. Simulation experiments suggest that the

approach is practical.

1. Introduction
Autonomous cars must be at least as reliable as human

drivers, who on average drive 100 million miles between

fatal accidents [1]. The environmental complexity of au-

tonomous driving requires large codebases and opaque neu-

ral networks that are unlikely ever to be verifiable, and are

barely even testable (especially if tests are rerun after any

modification).

A classic solution to this dilemma in many cyberphysi-

cal systems is to add a runtime monitor whose functional-

ity is limited to preventing accidents, and which, by being

smaller and simpler, is amenable to verification. Such a

monitor is often called a “safety controller” because its pri-

mary function is to enforce control laws. In an autonomous

car, however, higher-level planning and control is neither

the primary source of complexity nor the cause of common

failures. The problem is perception: that is, the car does

not calculate stopping distances incorrectly but rather fails

to notice an obstacle ahead, or misreads the lane markings.

Perception errors can have deadly consequences. For

example, in 2018 an Uber automated driving system (ADS)

struck and killed a pedestrian walking across the road with

their bicycle [2]. This accident was attributable in part

to a perception discrepancy. The ADS did not robustly

identify the pedestrian, which led to downstream errors in

path prediction and ultimately to the crash.

Perception discrepancies underlie many ADS disen-

gagements. In their study of nearly 160,000 ADS disen-

gagements, Boggs et al. [3] found that 21% of them were

directly attributable to discrepancies in perception, most

of which were object detection errors.

In addition to issues directly attributable to perception,

perception feeds information to the planning and control

stages [4], and may also be exacerbated by poor weather or

road conditions. Such indirect failures account for another

53% of disengagements. All told, perception errors may

influence three quarters of all ADS disengagements.

We propose a monitor that can mitigate flaws not only

in control but also in perception. The key ideas are:

1. The monitor does not directly access sensors, nor in-

terpret their data, but instead checks a certificate, a

proof that the proposed action is sound generated by

the controller.

2. The certificate uses sensor readings (which are signed

and thus unforgeable) and is designed so that the

presence, and never the absence, of readings is su�-

cient to establish confidence in the controller’s inter-

pretation.

3. For perception in particular, the certificate includes

a small number of properties that can be e�ciently

checked by the monitor and yet are su�cient to es-

tablish a reasonable degree of confidence in the in-

terpretation.

The remainder of our paper outlines the structure of

our certificate and its associated checks; describes some

experiments we have performed to evaluate the approach

in the CARLA simulator [5]; surveys related work; and

finally notes some of the key limitations of our approach.

2. A Perception Certificate
Our certificate is designed to mitigate the most likely and

most consequential errors in perception: that an object

is not registered at all (risking collision with an obstacle

the car fails to see); that multiple, distinct objects are in-

correctly perceived to be a single object (thus confusing

a pedestrian with a car, for example); and that the road

surface is not distinguished from potential obstacles.

The controller interprets the scene from a combination

of visual and LiDAR data. It constructs a segmentation

of the scene into a collection of distinct objects, each la-

beled with an object type (“car”, “pedestrian”, etc.) In

our implementation, we do not yet make use of the labeling,

except to distinguish the road surface from other objects.

The certificate itself includes only LiDAR points, be-

cause they support a direct physical interpretation. It is

structured as (a) a set of point sets, (b) for each point set,

a “traversal” comprising list of pairs of points; (c) for each

point set, a 3D velocity; and (d) a labeling of the point sets

that includes at least whether a point set corresponds to

the road surface or another ground plane (such as the side-

walk). Each point corresponds to a single LiDAR reading

(a 3D location and 3D velocity relative to the ego car), and

can be signed to prevent forgery.

The following tests, corresponding to the errors men-

tioned above, are applied to the certificate:

1. Spatial contiguity. Each pair of points in the

traversal for an object is compared to ensure that

the points are a maximum distance apart.



2. Consistent velocity. Each pair of points in the

traversal for an object is compared to ensure that

the points have velocities that are compatible within

some ‘v of the velocity of the point set itself.

3. Su�cient density. The 2D space in front of the

car is divided into a grid of cells; this test ensures

that there is at least one point (from some point set)

that falls in each cell.

4. Ground height. For any point set labeled as be-

ing in the ground plane, the height of every point is

checked to ensure that it is indeed at ground level.

5. Collision distance. For each point set, we calculate

the relative stopping distance using the point set’s

velocity, the velocity of the ego vehicle, and assumed

maximum decelerations, and check that no point in

the set is within that stopping distance.

The first two tests ensure that each point set plausibly

represents a single physical object, by preventing cases in

non-contiguous objects have been merged. The third test

ensures that there are no holes in the interpretation of the

scene (and requires, incidentally, that areas in the sky or

beyond the LiDAR range be represented explicitly as Li-

DAR points with infinite distance). The final test uses the

determined obstacles to prevent collision.

3. Experiments & Evaluation
We are evaluating the approach on scenarios chosen to re-

flect real conditions. Scenarios tested so far include:

1. The ego car following behind another car;

2. The ego car approaching a stationary car;

3. A bicycle crossing the road ahead of the ego car;

4. A scene with two vehicles ahead of the lead car that

are close enough to not be distinguished by the con-

troller.

Scenario (3) was based on the Uber incident in Tempe,

AZ). Figure 1 shows a sample frame from the video of this

scenario, illustrating the point at which the monitor deter-

mines that although the controller has correctly segmented

the scene into contiguous objects, the object representing

the bicycle is too close given the ego car’s speed. In this

case, the monitor would issue an emergency braking inter-

vention. The full version of the paper will analyze addi-

tional scenarios in more detail.

4. Related Work
Existing approaches to assurance of autonomous systems

span a wide spectrum, from formal verification to runtime

monitors of controllers. Few, however, address problems

with perception. Responsibility-sensitive safety (RSS) [6],

for example, has been proposed as a way to provide assur-

ance for the overall autonomy stack, but falls back on sta-

tistical notions of correctness to handle sensor errors, and

does not attempt to mitigate errors in sensor data analysis.

Various frameworks have been proposed for runtime

monitors that provide assurance for controllers, such as the

Simplex Architecture [7, 8, 9] and control envelopes [10, 11].

These approaches do not extend to perception systems,

since it is not possible to give an input-output specifica-

tion of their intended behavior.

Figure 1: Collision check failure

Several approaches have been proposed for formal ver-

ification of neural networks [12, 13], but these approaches

are either restricted to neural networks used for control or

simple properties such as the absence of adversarial exam-

ples in a small neighborhood around an input. Our ap-

proach, in contrast, can be applied to perception systems

beyond local criteria like adversarial examples, and can be

extended to those that do not rely on neural networks.

Reasonableness monitors [14, 15] have been proposed

as a way to leverage an ontology of a scene in order to

detect unexpected perceptions, such as a mailbox crossing

a street. Unlike our approach, they do not allow reason-

ing about fine-grained features of a driving environment,

and do not address errors of omission—a major cause of

problems. Also, reasonableness monitors will not detect

whether objects are incorrectly dropped from the scene.

Credible compilation [16] and Proof-Carrying Code

(PCC) [17] have been proposed as general techniques for

software components to justify the correctness of their com-

putations. Our approach bears some resemblance to them,

but extends them to the case of perception, in which guar-

antees of correctness that cover all possible cases are not

possible.

5. Limitations
Our current checks cannot identify a situation where the

controller incorrectly segments a single object into multiple

objects, because we only perform checks for object coher-

ence within the bounds of each purported object.

Another limitation is that the density check can spu-

riously fail for certain object orientations. If an object is

at an angle nearly perpendicular to the sensor, the limited

resolution of the LiDAR may cause consecutive points in

the scan to be measured at far away di�erent distances,

causing the check to fail even though the object is actually

connected. This is a fundamental limitation of LiDAR in-

formation; there is no way to determine based on the sensor

data whether the object is fully connected.

Our checks do not currently account for sensor noise

and localized failures like omitted points. In the future we

could incorporate a more probabilistic approach that takes

noise into account.



6. Acknowledgements
This research was funded by the Toyota Research Institute

in a collaboration between MIT CSAIL and Toyota. This

material is based upon work supported by the National Sci-

ence Foundation Graduate Research Fellowship Program

under Grant No. 1745302.

7. References
[1] S. M. P. Nidhi Kalra. Driving to safety: How

many miles of driving would it take to demonstrate
autonomous vehicle reliability? [Online]. Available: https:
//www.rand.org/pubs/research reports/RR1478.html

[2] D. Wakabayashi, “Self-Driving Uber Car Kills Pedestrian
in Arizona, Where Robots Roam,” The New York Times,
Mar. 2018.

[3] A. M. Boggs, R. Arvin, and A. J. Khattak, “Exploring
the who, what, when, where, and why of automated
vehicle disengagements,” Accident Analysis & Prevention,
vol. 136, p. 105406, Mar. 2020. [Online]. Available:
https://doi.org/10.1016/j.aap.2019.105406

[4] S. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani,
Y. Eng, D. Rus, and M. Ang, “Perception, planning,
control, and coordination for autonomous vehicles,”
Machines, vol. 5, no. 1, p. 6, Feb. 2017. [Online]. Available:
https://doi.org/10.3390/machines5010006

[5] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and
V. Koltun, “CARLA: An open urban driving simulator,” in
Proceedings of the 1st Annual Conference on Robot Learn-
ing, 2017, pp. 1–16.

[6] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On
a Formal Model of Safe and Scalable Self-driving Cars,”
arXiv:1708.06374 [cs, stat], Oct. 2018.

[7] T. L. Crenshaw, E. Gunter, C. L. Robinson, L. Sha, and
P. R. Kumar, “The simplex reference model: Limiting fault-
propagation due to unreliable components in cyber-physical
system architectures,” in IEEE International Real-Time
Systems Symposium, 2007.

[8] D. Phan and et. al., “A Component-Based Simplex Archi-
tecture for High-Assurance Cyber-Physical Systems,” 2017
17th International Conference on Application of Concur-
rency to System Design (ACSD), pp. 49–58, Jun. 2017.

[9] D. T. Phan, R. Grosu, N. Jansen, N. Paoletti, S. A.
Smolka, and S. D. Stoller, “Neural Simplex Architecture,”
arXiv:1908.00528 [cs, eess], Mar. 2020.

[10] N. Arechiga, S. M. Loos, A. Platzer, and B. H. Krogh,
“Using theorem provers to guarantee closed-loop system
properties,” in 2012 American Control Conference (ACC).
Montreal, QC: IEEE, Jun. 2012, pp. 3573–3580.

[11] N. Arechiga and B. H. Krogh, “Using verified control en-
velopes for safe controller design,” in American Control
Conference, 2014.

[12] R. Ehlers, “Formal Verification of Piece-Wise Linear Feed-
Forward Neural Networks,” arXiv:1705.01320 [cs], Aug.
2017.

[13] G. Katz and et. al., “The Marabou Framework for Verifica-
tion and Analysis of Deep Neural Networks,” in Computer
Aided Verification, I. Dillig and S. Tasiran, Eds. Cham:
Springer International Publishing, 2019, vol. 11561, pp.
443–452, series Title: Lecture Notes in Computer Science.

[14] L. H. Gilpin, “Monitoring Opaque Learning Systems,” in
ICLR Workshop on Debugging Machine Learning Models,
2019, p. 8.

[15] L. H. Gilpin and J. C. Macbeth, “Monitoring Scene Un-
derstanders with Conceptual Primitive Decomposition and
Commonsense Knowledge,” Advances in Cognitive Sys-
tems, p. 20, 2018.

[16] M. Rinard, “Credible compilation,” In Proceedings of CC
2001: International Conference on Compiler Construction,
Tech. Rep., 1999.

[17] G. C. Necula, “Proof-carrying code,” in Proceedings
of the 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’97.
New York, NY, USA: Association for Computing
Machinery, 1997, p. 106–119. [Online]. Available: https:
//doi.org/10.1145/263699.263712

https://www.rand.org/pubs/research_reports/RR1478.html
https://www.rand.org/pubs/research_reports/RR1478.html
https://doi.org/10.1016/j.aap.2019.105406
https://doi.org/10.3390/machines5010006
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/263699.263712

	 Introduction
	 A Perception Certificate
	 Experiments & Evaluation
	 Related Work
	 Limitations
	 Acknowledgements
	 References

