In Silico Laboratory Experiments using Statistical Model Checking: A new model of the Palytoxin-Induced Pump Channel as Case Study

Sérgio Campos

scampos

Bio Systems

Statistical Model Checking

Statistical Model Checking

Translation Principles

The Na+/K+ Pump

Whole-Cell Model

Single-Cell Model

Diprotomeric Model

Understanding Biological Systems

Understanding biological systems is vital. And hard.

- Laboratory experiments:
 - Difficult
 - Expensive money and time
- Simulation
 - Less expensive... Once you have the computing power...
 - Unable to guide simulations
- Our proposal: Statistical Model Checking
 - inexpensive so far, experiments performed on notebooks.
 - Able to model system and guide experiments
 - Uncertainty known: Faster if you require less accuracy

In Silico Experiments

scampos

Bio Systems

Statistical Model Checking

Statistical Model Checking

Translation Principles

The Na+/K+ Pump

Whole-Cell Model

Single-Cell Model

Diprotomeric Model

Statistical Model Checking

Combines model checking and simulation:

- Simulation engine
- Temporal logic properties guide the analysis process
 - For example, introduction of a toxin at a certain time
- Validity of a property is estimated from a number of execution traces
- Confidence margin not achieved ? Repeat...

We use UPPAAL-SMC.

scampos

Bio Systems

Statistical Model Checking

Statistical Model Checking

Translation Principles

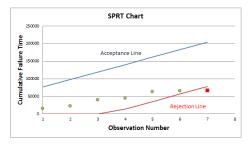
The Na+/K+ Pump

Whole-Cell Model

Single-Cell Model

Diprotomeric Model

Statistical Model Checking


Each run consists of a series of steps:

- Choose a valid transition according to transition rates
- Update variables according to transition rules

repeat

Once an execution run is finished, record: success/failure

SPRT algorithm decides if confidence error has been reached.

In Silico Experiments

scampos

Bio Systems

Statistical Model Checking

Statistical Model Checking

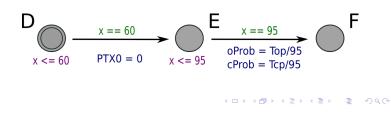
Translation Principles

The Na+/K+ Pump

Whole-Cell Model

Single-Cell Model

Diprotomeric Model


Conclusions

▲□▶▲□▶▲□▶▲□▶ = つへ

SMC Model

A Priced timed automata (PTA) is a tuple $(S, S_0, X, \Sigma, E, R, I)$ where

- S is a set of states, S_0 a initial state;
- X is a finite set of clocks;
- Σ = Σ_i ∪ Σ_o is a finite set of actions separated into input and output actions;
- E is a set of transitions
- R and I are functions assigning rate vector and invariants to each state.

In Silico Experiments

scampos

Bio Systems

Statistical Model Checking

Statistical Model Checking

Translation Principles

The Na+/K+ Pump

Whole-Cell Model

Single-Cell Model

Diprotomeric Model

Properties

Properties can be expressed in:

- CTL: AG(toxin → AF death): Will the toxin cause death in the future ?
- WMTL: Weighted Metric Temporal Logic
 - P[10]_{=?}[toxin → F death] What is the probability that the toxin will cause death in ten seconds?
 - P[10]_{>.9}[toxin → F death] Is the probability of death in ten seconds after a toxin greater than 90% ?

In Silico Experiments

scampos

Bio Systems

Statistical Model Checking

Statistical Model Checking

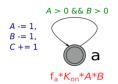
Translation Principles

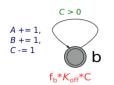
The Na+/K+ Pump

Whole-Cell Model

Single-Cell Model

Diprotomeric Model


Translation Principles


$$A + B \xrightarrow[k_{off}]{k_{off}} C \xrightarrow{k_{deg}}$$

a: $A + B \rightarrow C$ r(a) = K_{on}[A][B]

b: $C \rightarrow A + B$ r(b) = K_{off}[C]

□ → ★ 三 → ★ 三 → 二 三 →

In Silico Experiments

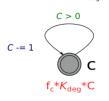
scampos

Bio Systems

Statistical Model Checking

Statistical Model Checking

Translation Principles


The Na+/K+ Pump

Whole-Cell Model

Single-Cell Model

Diprotomeric Model

Conclusions

c: $C \rightarrow r(c) = K_{deg}[C]$

Translation Principles

If we have

▶ A = 50, B = 80, C = 0,▶ $K_{on} = 0.2e^{-1}, K_{off} = 0.1e^{-1}, \text{ and } K_{deg} = 1.0e^{-1}$

we can ask things such as:

Pr[x<=60] (<> C >= 12 && C <= 18 && x > 30)

which returns

(36 runs) Pr(<> ..) in [0,0.097393] with confidence 0.95

Whole-Cell Model

Single-Cell Model

Diprotomeric Model

Modeling Experimental Steps

We can do more. Say we want to restart the experiment:

- at 60 seconds;
- increasing production of C by 20%
- decreasing degradation by 50%.

$$I_1 \bigoplus_{X <= 60} \xrightarrow{X == 60} A = 50, B = 80, C = 0, f_a = 1.2, f_b = 0.0, f_c = 0.5$$

Pr[x<=120] (<> C >= 12 && C <= 18 && x > 90)

results in

(402 runs) Pr(<> ..) in [0.46734,0.56721] with confidence 0.95.

In Silico Experiments

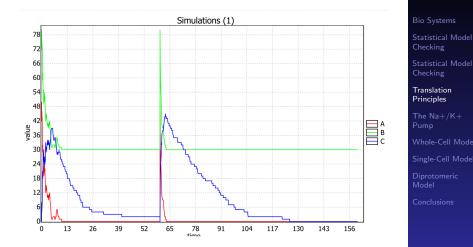
scampos

Bio Systems

Statistical Model Checking

Statistical Model Checking

Translation Principles


The Na+/K+ Pump

Whole-Cell Model

Single-Cell Model

Diprotomeric Model

Modeling Experimental Steps

In Silico

Experiments

Case Study: The Na+/K+ Pump Complex

- Mechanism by which cells move sodium and potassium ions across the membrane.
- It is an active process and involves the hydrolysis of adenosine triphosphate (ATP).
- Crucial for cell physiology, the non-electrical communication mechanism between cells.
- Toxins can block pumps... And cause death

In Silico Experiments

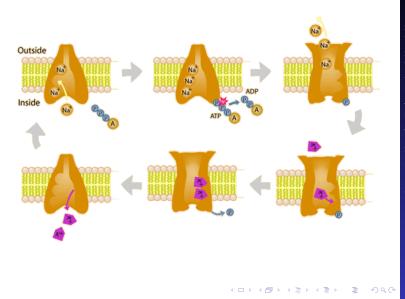
scampos

Bio Systems

Statistical Model Checking

Statistical Model Checking

Translation Principles


The Na+/K+ Pump

Whole-Cell Model

Single-Cell Model

Diprotomeric Model

Case Study: The Na+/K+ Pump

In Silico Experiments

scampos

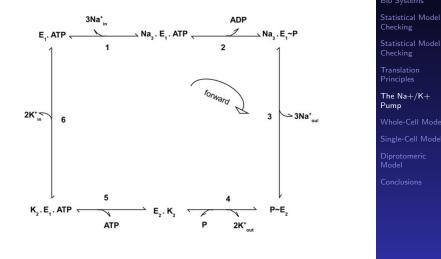
Bio Systems

Statistical Model Checking

Statistical Model Checking

Translation Principles

The Na+/K+ Pump

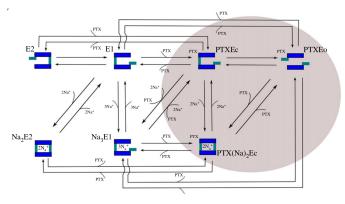

Whole-Cell Model

Single-Cell Model

Diprotomeric Model

Case Study: The Na+/K+ Pump

It works in a cycle, proposed by Albers and Post in 1965:


In Silico

Experiments scampos

Case Study: The Na+/K+ Pump

We want to know how Palytoxin affects the pump complex.

- We created a whole-cell model based on an existing differential equations model
- State PTXE represents an active toxin
- ▶ When PTX is active, the pump is open 19% of the time.
- ▶ We then replaced PTXE with PTXEo and PTXEc.

In Silico Experiments

scampos

3io Systems

Statistical Model Checking

Statistical Model Checking

Translation Principles

The Na+/K+ Pump

Whole-Cell Model

Single-Cell Model

Diprotomeric Model

First Model — Whole-Cell

The hard part:

- Defined a new reaction $PTXEc \leftrightarrow PTXEo$ with $r_{p8} = \alpha_{p8}[PTXE_c] \beta_{p8}[PTXE_o]$
- ▶ Determine α_{p8} and β_{p8} such that 19% of the time is spent in the PTXEo state.
- Initial conditions based on literature experiments:

• $[Na^+]i = 150$ nM, $[Na^+]o = 160$ nM, [PTX]o = 2.0 nM.

Iterated simulations until oProb was 19%:

•
$$\alpha_{p8} = 1.33, \ \beta_{p8} = 5.09$$

In Silico Experiments

scampos

Bio Systems

Statistical Model Checking

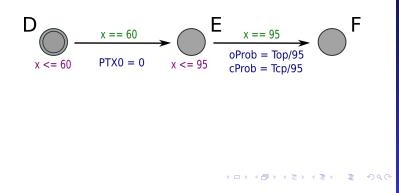
Statistical Model Checking

Translation Principles

The Na+/K+ Pump

Whole-Cell Model

Single-Cell Model


Diprotomeric Model

First Model — Whole-Cell

We can now reproduce experiments:

- Initially, [PTX]o = 2.0nM.
- After 60s, PTX is removed
- Activity is tracked for another 35s (95s total)

Behavior consistent with literature

In Silico Experiments

scampos

Bio Systems

Statistical Model Checking

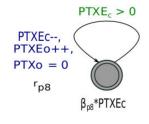
Statistical Model Checking

Translation Principles

The Na+/K+ Pump

Whole-Cell Model

Single-Cell Model


Diprotomeric Model

Second Model — Single-Cell

Moving on... Another paper studied a single cell configuration

- Same initial condition: [PTX]o = 2.0 nM.
- ▶ When the first channel is open, remove *PTX*.
- Induced channel stays active after PTX is removed.

 r_{p8} : $PTXE_c \rightarrow PTXE_o \quad \beta_{p8}[PTXE_c]$

In Silico Experiments

scampos

Bio Systems

Statistical Model Checking

Statistical Model Checking

Translation Principles

The Na+/K+ Pump

Whole-Cell Model

Single-Cell Model

Diprotomeric Model

Diprotomeric Configuration

Problem: different behaviors!!!

The whole-cell model with n-pumps set to 1 does not work.

The literature speculates that the pump might actually have *two binding* sites for PTX

- One with high susceptibility
- One with lower susceptibility

but no evidence for it has been found.

Difficult to perform experiment

We modelled the diprotomeric model:

Our model worked perfectly, for both configurations

In Silico Experiments

scampos

Bio Systems

Statistical Model Checking

Statistical Model Checking

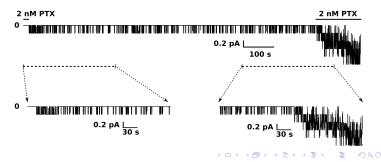
Translation Principles

The Na+/K+ Pump

Whole-Cell Model

Single-Cell Model

Diprotomeric Model


Diprotomeric Configuration

We simulated it for 1100s:

- 60s until channel opens
- 12m until PTX is reintroduced
- (A) Experimental (Artigas and Gadsby (2003))

(B) Simulation - SM

In Silico Experiments scampos

Bio Systems

Statistical Model Checking

Statistical Model Checking

Translation Principles

The Na+/K+ Pump

Whole-Cell Model

Single-Cell Model

Diprotomeric Model

Conclusions

- SMC provided the first evidence of a theoretical model
- Obtained biological scientific results
- Very efficient:
 - Typically clusters are needed for simulation
 - We used only a regular notebook
 - Execution used a few MB, a few seconds

scampos

Bio Systems

Statistical Model Checking

Statistical Model Checking

Translation Principles

The Na+/K+ Pump

Whole-Cell Model

Single-Cell Model

Diprotomeric Model