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Abstract—Video streaming now amounts to the majority of
traffic in the Internet. Media streaming relies on large-scale
content distribution networks (CDNs), that incur significant costs
to build or use. P2P distribution of video content reduce reliance
on CDNs and costs. Unfortunately, P2P distribution is fraught
with QoE problems, specially during flash crowds or in scenarios
where users have limited bandwidth to contribute to the overlay.
In this paper, we propose a new P2P overlay construction
mechanism to speed up peer joining during flash crowd events
while preserving QoE for peers already in the overlay. We also
show that our techniques work on resource-constrained overlays
where a fraction of peers lack resources to contribute to the
overlay, e.g., users on mobile devices and metered connections.

I. INTRODUCTION

P2P networks allow live streaming to large audiences
without relying entirely on (geographically-distributed) server
upload bandwidth. In P2P networks, peers redistribute received
content to other peers to improve system scalability and
reduce infrastructure costs. Real systems support thousands of
simultaneous users in multiple media distribution channels [1,
2]. Peers create partnerships in a decentralized way, forming
ad-hoc overlay mesh topologies over the physical network for
exchanging media content.

In the context of P2P media distribution, many interesting
challenges arise in overlay topology maintenance and media
redistribution strategies. For example, peer churn, caused by
peers joining and leaving the overlay, break partnerships and
disrupt media distribution [3]; uncooperative peers, which
do not or cannot contribute with media redistribution (also
known as free riders), increase resource competition in the
overlay [4]. Such approaches often involve sophisticated
overlay maintenance [5,6] or request scheduling [7,8].

Different from previous approaches, we investigate the
ability of simple mechanisms that impose constraints on peer
partnerships to build more robust and efficient overlays.

We propose a new P2P overlay construction mechanism to
speed up peer joining on resource-constrained overlays during
flash crowd events while preserving quality of experience
(QoE) for peers already in the overlay. Our technique, peer
partnership constraints (PPC), groups peers into classes by
considering each peer’s contribution to media redistribution

(upload bandwidth) and constrains which pairs of classes can
establish partnerships.

PPC improves overlay distribution efficiency by bringing
peers in classes with higher media redistribution scores
closer to the server, as proposed in previous work [5,6,9].
However, PPC achieves this with simpler mechanisms that
do not increase communication overhead or implementation
complexity. To alleviate the impact of uncooperative peers,
PPC puts uncooperative peers in a special class that is pushed
to the edge of the distribution overlay.

PPC speeds up peer joining rate during flash crowds by
reducing competition for partnerships in the overlay. As
each peer class can only establish partnerships with a few
select peer classes, peers can promptly find peers to establish
partnerships with. Moreover, as uncooperative peers join the
overlay at its edge, they do not disrupt media distribution for
peers already in the overlay.

We run real experiments on PlanetLab varying overlay
configurations and construction strategies. Our experiments
show that PPC improves on traditional overlay construction
strategies that do not restrict partnerships in the overlay: PPC
is able to join a large number of peers during flash crowds
while maintaining QoE even for resource-constrained overlays
containing a significant share of free riders.

The remainder of this work is organized as follows. We
describe TVPP, the real P2P streaming system we use in our
work, in Section II. Section III introduces PPC. We explain
our experimental method in Section IV and present our results
in Section V. Section VI discusses related work. We offer
conclusions in Section VII.

II. P2P LIVE STREAMING SYSTEM

A P2P live streaming system can be defined as a set of peers
that collaborate with each other to disseminate live media
transmissions. The server S is a special peer that encodes
the video, splits the video into chunks (a chunk may contain
multiple frames), and starts distribution of each chunk. In this
section we present TVPP [10], a research-oriented P2P live
streaming system used along our study. Each peer p has a
set of partners N (p) for the exchange of video chunks. To



get more control over partnerships, N (p) is split between two
subsets of partner peers: Ni(p) containing in-partners, partners
that provide chunks to p, and No(p) containing out-partners,
partners that receive video chunks from p.

The maximum number of in-partners is denoted by Ni(p).
Similarly, the maximum number of out-partners is denoted by
No(p). For S, Ni(p) = ∅. In order to join a live streaming
channel, a peer p registers itself at a centralized bootstrap
server B, which returns to p a subset of all peers currently
active in the system as potential partners. Peer p selects
peers from this subset and tries to establish partnerships
with them. If p ∈ No(p

′), then p′ ∈ Ni(p). We define an
overlay’s partnership ratio, denoted ρ, as the ratio of the total
number of in-partners by the total number of out-parters, i.e.,
ρ = Tin/Tout where Tin =

∑
p Ni(p) and Tout =

∑
p No(p)

(for all peers). We say the network has in-partner surplus when
ρ > 1, and out-partner surplus when ρ < 1.

Successfully established partnerships determine N (p).
When p detects that one of its partners p′ ∈ N (p) has been
silent for longer than a predefined time period, p removes
p′ from N (p). However, peer p periodically contacts the
bootstrap server to obtain a new list of potential partners to
replace lost partnerships.

Peers randomly choose in-partners from peer lists received
from the bootstrap server to connect to. To guarantee a new
peer n is able to join the overlay, an existing peer p is
able to accept an incoming partnership request even when
No(p) is full. In this case, p disconnects a random out-partner
q ∈ No(p) with less out-partnerships than the new peer n,
i.e., No(q) < No(n). Afterwards, peer p remains unable to
disconnect more out-partners to accept incoming partnership
requests during the next τ = 60s to prevent overlay instability.

Each peer has a local buffer to store video chunks.
Periodically, peers exchange buffer maps reporting available
chunks with their partners in No. Complementarity, peers
keep track of chunks not yet received in order to identify the
partners in Ni able to serve those chunks.

In the scope of this work, we schedule chunk requests
using the earliest deadline first policy together with the
Simple Unanswered Request Eliminator (SURE) [11]. SURE
makes peers prefer to request chunks to in-partners with less
unanswered (timed-out) requests, balancing load, and reducing
the number of unanswered requests. A peer considers that
a request has timed out if it is not answered within 500
milliseconds. Finally, cooperative peers immediately serve
received requests in order of arrival.

Peers send monitoring reports to the bootstrap server every
10 seconds. The reports include, among other information:
(i) number of chunks generated (only reported by the video
server); (ii) number of received chunks; (iii) number of sent
chunks; and (iv) number of chunks that have missed their
playback deadline.

III. PEER PARTNERSHIP CONSTRAINT

The main idea in Peer Partnership Constraint (PPC) is
the definition of peer classes. A peer class groups peers

with similar potential for contributing in terms of chunks
to the network. For each class, we impose peer partnership
constraints in order to construct an efficient overlay topology.

We consider a scenario where users may be unable to
contribute to stream distribution, e.g., mobile users on a
metered connection or users with limited upload bandwidth.
Such users effectively behave as free riders. In our previous
work studying free riding behavior [11], we proposed the
concept of conscious free-riders, which let other peers know
that they cannot contribute to chunk distribution. Compared
to oblivious free riders that do not provide such information,
conscious free riding improves distribution efficiency by
avoiding wasteful chunk requests to free riders. In this work,
we assume free riders are conscious.

One issue related to current P2P systems that has not
been addressed yet is that peers share their out-partner slots
with both cooperative peers and free riders. When a peer p
shares out-partner slots in No(p) between cooperative and free
rider peers, the P2P overlay requires a mechanism to identify
and push free riders to the overlay’s edge. Moreover, both
free-riding and cooperative peers compete for the same overlay
resources. This is a particularly serious problem during flash
crowds, when a large number of free-riding and cooperative
peers try to join the system simultaneously.

To take advantage of conscious free-riding, our idea is to
classify peers and provide different out-partner sets to peers
of different classes. We split the out-partner set No into No,c

and No,f , for out-partnerships to cooperative and free-riding
peers, respectively. Thus, a peer p accepts new cooperative
peers in No,c(p) and new free-riding peers in No,f (p).

Given the No split into No,c and No,f , the bootstrap
server can allow free riders to join the overlay immediately
even during during flash crowds without incurring the risk
of compromising the overlay stability and efficiency. This is
possible because the overlay is able to throttle the free rider
join rate itself as a function of the No,f partnership slots
surplus offered by (cooperative) peers already in the overlay.
When cooperative peers try to join the overlay, No,c slots will
still be available. As more cooperative peers join the overlay,
they contribute more No,c and No,f slots to the overlay.

We need to split No into No,c and No,f in a way
that optimizes overlay efficiency. Based on previous work
showing that overlays with high-capacity peers closer to the
server leads to higher distribution efficiency [5,6,9], we set
No,c proportional to a peer’s ability to contribute to chunk
distribution, and No,f inversely proportional to a peer’s ability
to contribute. For free-riding peers, No,c = No,f = 0 by
definition. We envision the four classes shown in Table I.

Table I
PEER CLASSES AND OUTPUT PARTNERSHIP CONFIGURATIONS

PEER CLASSES No,c No,f DESCRIPTION
Hot Class > 0 = 0 High contribution peers
Standard Class > 0 > 0 Average contribution peers
Cold Class = 0 > 0 Low contribution peers
FR Class = 0 = 0 Free-riding peers

2



The Hot Class contains peers having the highest potential
for contributing to the network since they have the highest
bandwidth. Peers from the hot class only connect to peers
from the hot and standard classes.

The Standard Class contains peers with average potential
for contributing to the network. Peers from the standard class
may establish partnerships with peers from any class.

The Cold Class contains peers with low potential for
contributing to the overlay. Peers from the cold class connect
to peers in the cold and standard classes as well as free riders.
Finally, FR Class holds all uncooperative peers and free riders.

Surely, such set of classes may be progressively expanded
(by adding classes) in order to handle specific scenarios
demanded by applications. In a more generic sense, the system
allows a peer p to accept a new out-partner request even when
No(p) is full, replacing existing out-partner in No by the new
out-partner if it has larger No.

In PPC, peers compete for collaborative out-partnership
slots (No,c) only with other peers that also have collaborative
out-partnership slots. These peers apply the same
disconnection strategy in Section II, preferring peers
with higher No,c. Similarly, peers without collaborative
out-partnership slots (i.e., with No,c = 0) only compete for
free-riding out-partnership slots with other peers without
collaborative out-partnership slots (e.g., cold and free-riding
peers). Again, peers apply the same disconnection strategy,
preferring peers with higher No,f .

IV. METHODOLOGY

We run experiments on PlanetLab [12] using TVPP. We
use as many PlanetLab nodes as possible in our experiments
(around 110, with slight variations between experiments).
Peers in the overlay are subject to CPU and bandwidth
restrictions in the underlying PlanetLab node.

In order to limit the upload bandwidth to more realistic
scenarios, we also apply a bandwidth limit, defined for each
experiment. The bootstrap server runs on our university’s
network and is not subject to bandwidth limitations (and has
spare CPU capacity). The video server streams a 420kbps
video. Each chunk is a MTU-sized packet, which gives around
40 chunks per second.

The experiment is composed of five runs, and we show
averaged results over all runs. Each run lasts for 900s. During
the first 400s, we run a single client on each PlanetLab
node (i.e., around 110 peers). On second 400, we launch ten
additional peers on each PlanetLab node to emulate a flash
crowd event. We propose a static scenario in order to evaluate
the performance of PPC. By static we mean that: (i) the class
of a given peer is known in advance,1 and (ii) peers never
change classes during the experiment. As we fix the maximum
number of in-parters and out-partners (Ni and No) that peers
in each class have, we run experiments varying Ni and No to
cover a range of overlay characteristics.

1In real deployments, we may rely on the upload bandwidth declared by
the user for defining the class of each peer, or estimate its contributions at
run time [9,13].

Table II
DEFAULT EXPERIMENT CONFIGURATION (Ni = 20, ρ ≈ 1)

CONSTRUCTION STRATEGY
Peer Upload Peers Classic PPC-u PPC
Class (Mbps) (%) No No,c No,f No,c No,f

FR 0.0 50 0 0 0 0 0
Cold 1.5 24 38 18 20 0 38
Standard 2.5 17 40 20 20 18 22
Hot 4.0 09 46 26 20 46 0

In particular, we focus on varying the value of ρ =
Tin/Tout =

∑
p Ni(p)/

∑
p No(p). Small values of ρ (more

out-partners than in-partners) capture aggressive overlays
where partnerships are aplenty but peers may lack bandwidth
to answer all chunk requests; large values of ρ (less
out-partners than in-partners) capture conservative overlays
where partnerships are more restricted but peers are likely to
have bandwidth to answer chunk requests; and values of ρ ≈ 1
capture balanced overlays.

V. EVALUATION

Table II shows the default configuration for our experiments.
We consider four classes of peers with different upload
bandwidths. We set 50% of the peers as free riders to stress
the overlay, and distribute the remaining peers in the other
three classes. Results with the same upload bandwidth and
lower fractions of free riders yield qualitatively better results,
as the overlay has more bandwidth per peer. (not shown). We
compare PPC with two overlay construction strategies:

• Classic: Usual traditional strategy equivalent where peers
have a single set of out-partners (No).

• PPC-uniform: Naïve PPC strategy where all classes
can establish partnerships with all classes (including
free riders). PPC-uniform (PPC-u) can be seen as the
classic strategy improved by splitting No into No, c and
No, f . PPC-u differs improves on the classic strategy
by avoiding the competition between cooperative and
free-riding peers for partnerships.

• PPC: Compared to PPC-u, PPC enforces a more robust
overlay topology organization that prevents free riders
close to the media server.

Based on previous results on overlay configuration [14,15],
we set Ni = 20 for all peers. We then compute No to achieve
the desired ρ. In Table II, we show No, No,c, and No,f values
to have ρ ≈ 1.2

A. Balanced Overlays (ρ ≈ 1.0)

In this experiment we consider a balanced overlay where the
total number of in-partnerships is the same as the total number
of out-partnerships, as shown in Table II. Figure 1 shows
results averaged over the five runs. Figure 1(a) shows the
absolute number of peers in the overlay and actively watching
the stream. Peers that fail to receive enough video chunks

2Given that peers are free to enter and leave the P2P network, we consider
the ratios to be approximated.
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Figure 1. Overlay Size, Continuity, and Latency for Balanced Overlays (ρ = Ti/To ≈ 1.0)
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Figure 2. Overlay Size, Continuity, and Latency for Conservative Overlays (ρ = Ti/To ≈ 1.5)

to reproduce the media are not counted in the overlay. The
Classic construction strategy joins approximately 800 peers in
the overlay with severe fluctuation on the number of joined
peers. Both PCC-u and PCC support a steady 950 peers in the
overlay, with negligible fluctuation.

Figure 1(b) shows the average discontinuity over all peers.
We define average discontinuity for each peer as the fraction of
video chunks that miss their playback deadline. Only peers that
are in the overlay, i.e., included in Figure 1(a), are considered.
We observe that PPC-u and PPC provide a discontinuity
below 4% throughout the experiment, 3, while Classic presents
degraded performance after the flash crowd.

Figure 1(c) shows the average chunk distribution latency
for all peers in the overlay. The latency of a chunk for a peer
p is defined as the period of time between the generation of
the chunk at the video server S and the chunk playback at
peer p. Again, only peers that are in the overlay, i.e., included
in Figure 1(a), are considered. Again, we observe PPC-u and
PPC provide stable and reasonably low distribution latency,
while Classic fails to distribute chunks in a timely fashion.

These results show that, while PPC-u and PPC achieve
efficient and stable media distribution, the Classic overlay
construction strategy leads to a disrupted overlay that fails
at effective media distribution (fewer peers can reproduce the
media, and the ones that can do so with degraded QoE). The

3According to Traverso et al. [16], a discontinuity of 4% is acceptable.

main reason for this is the competition between cooperative
and uncooperative peers for out-partnerships.

B. Conservative Overlays (ρ ≈ 1.5)

In this experiment we consider a conservative overlay where
we increase the total number of in-partnerships by 50%, setting
Ni = 30. We keep all other parameters unchanged (including
the number of out-partners), as shown in Table II.

Figure 2(a) shows that all strategies reach approximately
950 joined peers. We also notice that the Classic strategy
presents fluctuations after 800s. Since partners prioritize peers
with large No, the peers with largest potential for contributing
to the network tend to establish in-partnerships, which incurs
in more available resources in the overlay and higher stability
for all strategies (including the Classic strategy).

Figure 2(b) shows the average discontinuity. We observe all
trategies provide discontinuity below the acceptable threshold
of 4%, but PPC presents the lowest discontinuity among all
overlay construction strategies. Figure 2(c) shows the average
latency, with similar results: all strategies provide acceptable
latency with a slight edge for PPC.

Overall, a conservative overlay (ρ ≈ 1.5) where peers
with higher contributions are accepted into the overlay and
pulled close to the server yields a more robust and effective
overlay. However, even in this scenario PPC presents a better
performance than the Classic strategy.
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Figure 3. Overlay Size, Continuity, and Latency for Agressive Overlays (ρ = Ti/To ≈ 0.5)
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Figure 4. Overlay Size, Continuity, and Latency for Agressive Overlays (ρ = Ti/To ≈ 0.5)

C. Aggressive Overlay (ρ ≈ 0.5)

In this experiment we consider an aggressive overlay where
we double the total number of out-partnerships in the overlay
while keeping Ni = 20. As overlay robustness and efficiency
degrades in this configuration, we first show results for
systems with 40% of free riders. Table III summarizes the
configuration.

Table III
AGGRESSIVE OVERLAY EXPERIMENTS (Ni = 20, ρ = 0.5)

CONSTRUCTION STRATEGY
Peer Upload Peers Classic PPC-u PPC
Class (Mbps) (%) No No,c No,f No,c No,f

FR 0.0 40 0 0 0 0 0
Cold 1.5 27 76 36 40 0 76
Standard 2.5 22 80 40 40 36 44
Hot 4.0 11 92 52 40 92 0

Figure 3(a) shows that both Classic and PPC-u build
overlays that support less peers and are significantly more
unstable. PPC builds a stable overlay that supports the same
amount of peers as in the other configurations. As expected,
Figs. 3(b) and 3(c) show that only PPC is able to keep low
discontinuity and latency, while PPC-u and Classic result in
very low QoE. Such result shows that PPC is more robust than
Classic and PPC-u for a wider range of overlay characteristics.
In order to complement the evaluation of PPC, Figure 4 shows

results for PCC and agressive overlays with 40% and 50% of
free riders (F-40% and F-50%, respectively). We observe that,
even with 50% of free riders, PPC still manages to support
around 940 peers and maintain reasonable QoE, strengthening
our point that PPC builds more robust and effective overlays
compared to PPC-u and Classic.

VI. RELATED WORK

Peers can have their neighbors classified as in-partners and
out-partners. The maximum number of in-partners is referred
to as in-degree, and the maximum number of out-partners is
referred to as out-degree. Without limiting the out-degree, the
amount of out-partners may extrapolate a peer’s bandwidth.
To couple with this, previous work proposed priority schemes
for selecting the out-partners that should receive the next
chunk [17,18]. According to [6], large neighborhoods incur
many issues, such as an increased overhead for control
messages that wastes bandwidth, and increases the complexity
of request scheduling.

Traverso et al. [14] provide a comprehensive comparison
benchmarking different overlay construction and maintenance
strategies in P2P-TV systems. Similar to our work, their results
show that topological properties of the overlay have a deep
impact on the QoE and network load.

Ullah et al. [19] propose an autonomous management
framework that (i) enables peers to learn user behavior
and organize themselves to improve streaming quality, and
(ii) controls the topology of push-based systems through a
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stabilization process that continuously pushes unstable peers
towards the leaves of the tree.

The organization of peers also plays a fundamental role
during flash crowds. Most of the strategies for handling flash
crowds are based on throttling new peers joining rate to allow
the overlay to adapt and scale. Rückert et al. [20] propose
an hybrid streaming approach to prepare the system overlay
(going beyond just throttling the joining rate). Fangming et
al. [15] propose the use of Content Delivery Networks to
absorb the load of flash crowds while the overlay adapts.
Complementary to this approach, we propose a mechanism
that classifies peers and organizes the overlay to increase its
robustness and ability to receive new peers. Differently from
these works, we allow continuous joining of peers in the
network and we turn our attention for managing the share
of cooperative peers and free-riders connecting each peer.

Additionally, many overlay construction strategies propose
pushing free riders to the edge of the overlay to improve
distribution efficiency. Piatek et al. [21] identify uncooperative
peers by auditing cryptographic receipts of chunk transfers,
while Guerraoui et al. [13] identify uncooperative and
malicious peers based on their partnerships.

Finally, Payberah et al. [5] address the problem of
free-riding through parent peers auditing the behavior of their
children peers by querying their grandchildren. They conclude
that the proposed strategy has better performance in different
scenarios compared to a multiple-tree implementation of the
system.

VII. CONCLUSION

In this work we investigated the usefulness of splitting
cooperative peers and free riders into distinct classes of peers,
and differentiating partnerships to each class. We have shown
that this approach improves overlay robustness and efficiency
by avoiding competition for resources between cooperative
peers and free riders.

We presented the Peer Partnership Constraints (PPC)
overlay construction strategy, which groups peers with similar
contributions into classes and constrains which classes can
establish partnerships with each other class.

We evaluated PPC in real experiments in PlanetLab, with a
significant fraction of free riders, limited upload bandwidth,
and different overlay characteristics. Our results show that
PPC builds robust and effective overlays that support more
peers and achieve higher quality of experience compared to
traditional overlay construction strategies.

As future work, we plan to study an algorithm to quantify
the contributions of a peer to the overlay and set its class
dynamically.
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