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Abstract. A crucial goal in computer security is to protect sensitive
information from unwanted disclosure. However, some leakage is often
unavoidable, be it by design of the system or by technological limitations.
The field of Quantitative Information Flow (QIF) is concerned with the
quantification, and limitation, of information leakage in systems.
The QIF framework models systems as information-theoretic channels
taking (secret) inputs and producing (observable) outputs, thereby in-
creasing the adversary’s knowledge about the secret value, as measured
by some information metric.
In this paper we use probabilistic model checking to obtain channels
modeling two popular anonymity protocols, the Dining Cryptographers
(a.k.a. DC-Nets) and Crowds, in two versions each. We then derive the
systems’ capacities w.r.t. the g-leakage framework, which are robust up-
per bounds on information leakage that hold irrespectively of the prob-
ability distribution on secret values, or of the interests and goals of the
adversary. To the best of our knowledge, this is the most general QIF
analyses of such protocols.

Keywords: Quantitative Information Flow, Formal Methods, Model
Checking, Dining Cryptographers, Crowds, g-leakage.

1 Introduction

Protecting sensitive information is a crucial goal of computational security, and
the more dependent human affairs are on computational systems, the more press-
ing becomes the matter. Ideally, we would like to prevent all leakage of sensitive
information, but this might not be achievable in practice. For example, a pass-
word checker on an ATM will always leak some information—either by accepting
the user’s input (which completely reveals the password value), or by rejecting
it (which rules out one possible value).

Nevertheless we use ATMs regularly, and many other systems suffering from
similar issues . We are comfortable in doing so not because they do not leak
sensitive information, but because we consider the amount of information they
leak to be “acceptable”. In fact, most systems, either by technical limitation or
by design, leak some information, and developing ways to measure how much
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information is leaked is essential in order to analyze the security of such systems.
However, quantifying leakage or guaranteeing that it is limited is a difficult task.

Quantitative Information Flow (QIF) is the branch of security that stud-
ies the amount of information leaked by a system. It has seen growing interest
over the past decade, including foundational works [15,22,11,35,27,8,4], verifica-
tion of information flow properties [16,24,6,10,14,13,36], detection of real system
vulnerabilities [20,23], and, of course, methods to reduce information leakage.

In QIF, security systems are modeled as information-theoretical channels,
from which various properties of interest can be deduced. One crucial, and in
general non-trivial task, however, is to compute the channel corresponding to the
behavior of a given computational system—even for small but intricate protocols.

In this paper we describe a general procedure to derive such channels using
probabilistic model checking. Using this procedure we model the Dining Cryp-
tographers (a.k.a. DC-Nets) [12], and Crowds [33], two well-known anonymity
protocols, in two variations each: (i) the standard DC-Nets, in which nodes are
organized in a ring; (ii) a version of DC-Nets in which nodes are all connected to
each other; (iii) the standard Crowds protocols; and (iv) a version of Crowds in
which nodes are organized in a grid and each node can only communicate with its
immediate neighbors. We then analyze them using the state of art in QIF met-
rics: the g-vulnerability framework [5]. More precisely, we derive g-capacities [3]
of such channels, which are robust upper bounds on the information leakage they
may present in any possible context of execution. This means that the bounds
computed hold irrespectively of the probability distribution on secret values, or
of the interests and goals of an adversary. To the best of our knowledge, this is
the the most general information-flow analyses of such protocols.

The main contributions of this paper are:

1. Allowing anonymity protocols to be expressed in a precise modeling language
which closely reflects their implementation.

2. A direct computation of the relevant channels.
3. The first characterization of the g-capacities of the Dining Cryptographers

and the Crowds anonymity protocols, which are state-of-the-art robust mea-
sures of information flow.

4. A detailed comparison of the superiority of one variant of each protocol over
the other in terms of information leakage guarantees.

Future work could lead to a general purpose tool support to allow the com-
putation of critical information flow properties.

This remaining of this paper is organized as follows. Section 2 reviews nec-
essary background on QIF and on probabilistic model checking, including the
PRISM tool. Section 3 describes the Dining Cryptographers and the Crowds
anonymity protocols, in two variations each. Section 4 describes the general pro-
cedure using probabilistic model checking to derive channels from protocols, and
presents the channels produced for the protocols we study. Section 5 analyzes
the channels obtained the in light of QIF metrics. Finally, Section 6 discusses
related work, and 7 discusses future work, and concludes.



Formal Analysis of the Information Leakage of Anonymity Protocols 3

2 Preliminaries

In this section we review basic concepts from quantitative information flow, and
from probabilistic model checking.

2.1 Quantitative Information Flow

Secrets and vulnerability. A secret is some piece of sensitive information the
defender wants to protect, such as a user’s password, social security number, or
current location. The attacker usually only has some partial knowledge about
the value of a secret, represented as a probability distribution on secrets called
a prior. We denote by X the set of possible secrets, and we typically use π to
denote a prior belonging to the set DX of probability distributions over X .

The vulnerability of a secret is a measure of the utility of the attacker’s knowl-
edge about the secret. Several notions of vulnerability (or their dual concept,
entropy) have been proposed in the literature, including Shannon entropy [34],
guessing entropy [25], and Bayes vulnerability/risk [35,11].

Recently, the g-vulnerability framework [5] has been proposed, consisting of a
family of vulnerability measures that capture various adversarial models. It has
been shown that these functions coincide with the set of continuous and convex
functions on DX , and are, in a precise sense, the most general information mea-
sures w.r.t. a set of basic axioms. 3 In this paper we shall adopt g-vulnerabilities
as our measures of information.

The operational scenario captured by g-vulnerabilities is parameterized by
a set W of guesses (possibly infinite) that the attacker can take w.r.t. a secret,
and a gain function g : W × X → R. The gain g(w, x) expresses the attacker’s
benefit for making guess w when the actual secret is x. Given a distribution π,
(prior) g-vulnerability measures the attacker’s success as the expected gain of
an optimal guess, being defined as

Vg [π]
def
= max

w∈W

∑
x∈X

π(x)g(w, x).

Channels, posterior vulnerability, and leakage. Systems can be modeled
as information theoretic channels. A channel matrix, or simply a channel, C :
X × Y → R is a function in which X is a set of input values, Y is a set of
output values, and C(x, y) represents the conditional probability of the channel
producing output y ∈ Y when input x ∈ X is provided. Every channel C satisfies
0 ≤ C(x, y) ≤ 1 for all x ∈ X and y ∈ Y, and

∑
y∈Y C(x, y) = 1 for all x ∈ X .

A distribution π ∈ DX and a channel C with inputs X and outputs Y
induce a joint distribution p(x, y) = π(x)C(x, y) on X × Y, producing joint
random variables X,Y with marginal probabilities p(x) =

∑
y p(x, y) and p(y) =

3 More precisely, if posterior vulnerability is defined as the expectation of the vulnera-
bility of posterior distributions, the measure respects the data-processing inequality
and yields non-negative leakage iff vulnerability is convex.
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x p(x, y), and conditional probabilities p(x|y) = p(x,y)/p(y) if p(y) 6= 0. For a

given y (s.t. p(y) 6= 0), the conditional probabilities p(x|y) for each x ∈ X form
the posterior distribution pX|y.4

A channel C in which X is a set of secret values and Y is a set of observable
values produced by a system can be used to model computations on secrets.
Assuming the attacker has prior knowledge π about the secret value, knows how
a channel C works, and can observe the channel’s outputs, the effect of the
channel is to update the attacker’s knowledge from a prior π to a collection of
posteriors pX|y, each occurring with probability p(y).5

Example 1. Given X = {x1, x2, x3} and Y = {y1, y2, y3, y4}, and the channel
matrix C below, the (uniform) prior π = (1/3, 1/3, 1/3) combined with C leads to
the joint matrix J as follows.

C y1 y2 y3 y4
x1 1 0 0 0
x2 0 1/2 1/4 1/4
x3 1/2 1/3 1/6 0

π−→

J y1 y2 y3 y4
x1 1/3 0 0 0
x2 0 1/6 1/12 1/12
x3 1/6 1/9 1/18 0

Summing the columns of J gives the marginal distribution pY = (1/2, 5/18, 5/36, 1/12),
and normalizing gives the posterior distributions pX|y1 = (2/3, 0, 1/3), pX|y2 =
(0, 3/5, 2/5), pX|y3 = (0, 3/5, 2/5), and pX|y4 = (0, 1, 0). ut

The posterior vulnerability is the vulnerability of the secret after the attacker
observed the output of the channel. Formally, given a g-vulnerability Vg, the
posterior g-vulnerability w.r.t. a prior π and a channel C is defined as

Vg[π,C]
def
=

∑
y∈Y

p(y)Vg(p(X|y)

=
∑
y∈Y

max
w∈W

∑
x∈X

π(x)C(x, y)g(w, x).

The information leakage of a channel C under a prior π is a comparison
between the vulnerability of the secret before the system was run—called prior
vulnerability—and the posterior vulnerability of the secret. Leakage, then, re-
flects by how much the observation of the system’s outputs increases the utility
of the attacker’s knowledge about the secret. It can be defined either

multiplicatively: Lg[π,C] =
Vg[π,C]

Vg[π]
,

which measures the relative increase in the adversary’s information about the
secret; or

additively: L+
g [π,C] = Vg[π,C]− Vg[π],

4 To avoid ambiguity, we may write probabilities with subscripts, e.g., pXY or pY .
5 This collection of posterior distributions is, in fact, a distribution on (posterior)

distributions, and is called a hyper-distribution on secrets [27].
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which measures the absolute increase in the adversary’s information.
Multiplicative and additive versions of leakage provide complimentary infor-

mation about the behavior of a channel. Depending on the system itself, on the
nature of the secret inputs, and even on the interests of the adversary, one def-
inition of leakage may be more suitable than the other to express information
leakage on a certain scenario, but in general a proper assessment of leakage may
have to take both versions into consideration [3].

Capacities. Although both multiplicative and additive g-leakages represent
useful quantities, to properly compute them one needs to know not only the
channel C representing the system, but also the prior π and the gain-function
g, and both can vary depending on the adversary’s knowledge and interests.
For robustness, we can consider capacities, which are leakage measures that
universally quantify over the prior π, over the gain function g, or over both,
making the measurements less dependent on the particular context in which the
system will run.

Quantifying over the prior π acknowledges that, in many situations, it is
unknown and the assumption that it is uniform is not reasonable. Quantifying
over the gain function g acknowledges that we might not know the value to the
adversary of different sorts of partial information about the secret, neither now
nor even in the future. Combining all ways of quantifying over π and g (one,
other, or both), and the two versions of leakage (multiplicative and additive),
we arrive at a total of six types of capacities, which are depicted in Table 1.

Types of Capacities Multiplicative Leakage Additive Leakage

For all π, fixed g Lg[∀, C] = max
π

Lg[π,C] L+
g [∀, C] = max

π
L+
g [π,C]

Fixed π, for all g L∀[π,C] = max
g

Lg[π,C] L+
∀ [π,C] = max

g
L+
g [π,C]

For all π, for all g L∀[∀, C] = max
π,g

Lg[π,C] L+
∀ [∀, C] = max

π,g
L+
g [π,C]

Table 1: Types of capacities.

Although finding a way to compute the capacities Lg[∀, C] and L+
∀ [∀, C] is

still an open problem, there are known algorithms for computing the other four
capacities [3]. More precisely, L∀[π,C], L∀[∀, C], and L+

∀ [π,C] can be computed
in time linear on the size of the channel C. L+

g [∀, C], however, is NP-hard. We
will use these capacities to compare our protocols in Section 5.

Capacities are upper bounds on the information leakage of a protocol over a
variety of combinations of adversarial prior knowledge about the secret (captured
by different priors), and of adversarial intentions and interests (captured by
different gain functions). For this reason, they are particularly useful bounds on
the leakage of channels that will execute in possibly unknown contexts.
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2.2 Probabilistic Model Checking

Here we briefly review key concepts from probabilistic model checking, and some
of the basic features of the model checker we use, PRISM[1]. Our formalism and
notation are similar to that used by C. Baier and J.-P. Katoen [7], and D.
Parker [31].

Discrete Time Markov Chains. Probabilistic model checking works by mod-
eling the system of interest as a probabilistic automaton. All protocols in this
paper are modeled as discrete-time Markov chains (DTMC).

A discrete-time Markov chain M is a tuple M = (S, P, i, AP,L) such that S
is a (finite and nonempty) set of states, P : S × S → [0, 1] is the probabilistic
transition function, i ∈ S is the initial state, AP is the set of atomic propositions,
and L : S → 2AP is a labeling function. We also require that, for all s ∈ S,∑
s′∈S P (s, s′) = 1.

A path ω in a DTMC is a infinite sequence of states s0s1... such that, for
all k ≥ 0, P (sk, sk+1) > 0. Any execution of a DTMC corresponds to a path.
Therefore, in order to reason about probabilities over executions of a DTMC,
we must first associate a probability to each path. For each s ∈ S, we define
Paths to be the set of all paths that start on s. A probability distribution Probs
over Paths is defined as follows. Let ωf = s s1 ... sn be any finite path starting
in s, and Cyl(ωf ) be the set of (infinite) paths that have ωf as a prefix. Let
Σs be the smallest σ-algebra on Paths that contains Cyl(ωf ) for all ωf starting
in s. We define Probs as the unique probability distribution on Σs such that
Probs(Cyl(ωf )) = P (s, s1)...P (sn−1, sn) for all finite paths ωf starting in s.

PCTL. [18] The temporal logic used by PRISM to verify properties of DTMCs
is the PCTL (Probabilistic Computational Tree Logic), whose syntax is given
by:

φ ::= true | a | φ1 ∧ φ2 | ¬φ | P./p(ψ)

ψ ::= Xφ | φ1U≤kφ2 | φ1Uφ2

Here φ represents state formulas and ψ path formulas, a is an atomic proposition,
p ∈ [0, 1], and ./ is a symbol to represent either ≤, <,> or ≥. The semantics of
the probabilistic path operators P./ p is s |= P./ p(ψ) ⇔ Probs({ω ∈ Paths|ω |=
ψ}) ./ p, for all s ∈ S. The operators next (X ), bounded until (U≤k) and until
(U) are defined as usual.

Intuitively, P./p(ψ) is satisfied by a state s if the probability of taking a path
starting at s which satisfies ψ is in the interval determined by ./ p. This operator
allows PRISM to calculate probabilities of certain event ocurring, a feature that
is extremely useful in calculating channels, as we discuss in section 4.
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3 The Dining Cryptographers and the Crowds anonymity
protocols

In this section we describe two well-known anonymity protocols from the liter-
ature, and their variations, the leakage analyses of which we performed.

3.1 The Dining Cryptographers protocol

The Dining Cryptographers (DC) anonymity protocol was proposed by David
Chaum [12]. It is usually described within the following setting. Three cryptog-
raphers are invited by the NSA (The U.S. National Security Agency) to have
dinner at a restaurant. Along with the invitation, one of them might have been
secretly told by the NSA to pay the bill. Otherwise, the NSA itself would pay.
The cryptographers wish to know whether one of them was asked to pay the bill
(as opposed to the NSA paying the bill), without revealing, however, which one
of them is the payer. In order to do so, they execute the following protocol.

Sitting in a round table, each cryptographer flips a coin, and shares the result
with the cryptographer to their right. In this way each cryptographer sees the
results of only two of the coins: the one he himself flipped, and the one flipped
by the cryptographer sitting to his left. Each cryptographer then makes a public
announcement. If he is not paying the bill, he announces 0 if the results of the
two coins he sees are the same (i.e., both heads or both tails), and announces 1
if they are different. However, if the cryptographer is the payer, he announces 1
if the results of the two coins coincide, and announces 0 otherwise.

The cryptographers now can learn whether the NSA is paying: if the sum
of all three announcements (modulo 2) equals 0, the NSA is paying. If the sum
equals 1, then one of them is paying. This can be easily seen from the fact that
the announcement of each cryptographer not paying the bill is the number of
heads he has seen (modulo 2). If no one is paying, then the final result is equal to
twice the number of coins that landed heads up to modulo 2, which is certainly
0. If one of them is paying, however, the final result will be 1.

If the coins are fair, the identity of the cryptographer who pays the bill is
totally preserved, both in relation to the other two cryptographers and to any
external observer. If the coins are biased, however, the announcements made by
the cryptographers might make one of them more likely to be the payer than
the others. For example, if the coin tosses are very likely to yield tails, and only
one cryptographer announces 1, then he is probably paying the bill.

We are specially interested in scenarios with a biased coin, for some informa-
tion is leaked by the protocol. We can use QIF to precisely quantify this leakage
and we can determine by how much the attacker can improve his guessing strat-
egy. In this paper we study two different generalizations of the DC protocol,
which expand the number of cryptographers involved.

The cycle-DC variation. Our first variation of the DC protocol is akin to
the original, but the number of cryptographers can be any integer greater than
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2. Similarly to the original protocol, the cryptographers are arranged in a cir-
cular table, each tosses a coin and shares the result to the cryptographer at his
right. The announcements are made in the same manner as before. Also in this
scenario, one of the cryptographers is the payer if, and only if, the sum of the
announcements (modulo 2) equals 1.

The complete-DC variation. In our second variation of the DC protocol, all
pairs of cryptographers share a coin toss result (i.e., they form a clique). If there
are N cryptographers, each one has access to N−1 coin-toss results. After all
the coin tosses are made, each cryptographer computes the number of heads he
has seen (modulo 2). If he is not paying for the bill, this is the number that he
announces. If he is paying, however, he inverts the announcement. Since each
heads is counted twice, we also have that one of the cryptographers is paying if,
and only if, the sum of the announcements (modulo 2) equals 1.

3.2 The Crowds protocol

The Crowds protocol was first devised to protect anonymity on web transactions.
Suppose there is a group of users who wish to make requests to a server, without
revealing their identities to that server.

The users agree to cooperate on the protocol, and take the following steps.
(1) If a user wants to send a request (we call such user an initiator), he chooses
at random a user in the group (including himself), and forwards the request to
this user. (2) If a user receives a request, he forwards it to a random user with
probability pf , and forwards it directly to the server with probability 1−pf . The
second step is repeated until the request reaches the server.

The protocol protects the initiator’s identity because, after being forwarded
for the first time, the request has an equal probability of landing at any user of
the system. Therefore, the server does not acquire any information by observing
which user sent the request to him at the end of the process.

The analysis of the protocol becomes more interesting when there are some
corrupt users in the group. These corrupt users are in collusion with the server,
and reveal to it the identity of any regular user that sent them a request—in this
case, we say that the regular user in question was detected. Because the initiator
must be in any path of the message on its way to the server, whenever a user
is detected, he is the most likely to be the initiator. As expected, the level of
anonymity provided by the protocol in this scenario depends on the number of
users, on the number of corrupt users, and on the probability pf .

In this paper we consider two variants of the Crowds protocol.

The (original) Crowds variation. In this variation, each user can communi-
cate with any other user (they form a clique), and there is no restriction on who
can forward a message to whom.
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The grid-Crowds variation. A common variation of this protocol occurs
when a user is able to forward a request only to a subset of the remaining users.
One particular instance of this scenario is when users are placed on a grid, as
illustrated in Figure 1. Edges represent users who can communicate, and we
consider the edges going off the grid to connect users at opposite sides, e.g.,
user 1 is connected to users 2, 3, 4 and 7. We consider that every user can also
communicate directly with the server.

Fig. 1: 3×3 instance
of grid-Crowds.

Other than this limitation, the protocol works as the
original: upon receiving a request, each user forwards to a
user with whom he can communicate (including himself)
with probability pf , or sends it directly to the server with
probability 1−pf . In this scenario, even if there are no
corrupt users, the server can infer some information about
the originator of the request. For example, if the server
receives a request from user 2 in Figure 1, there is a greater
chance that it was originated by user 1 than by user 6.

On this grid variation, the information leakage of the protocol depends not
only on the number of corrupt users and on pf , but also on where the corrupt
users are located in the grid. One of our goals is to study the effects these
topological variations have on QIF measures.

4 Deriving the channels corresponding to the protocols

In this section we show how to use the PRISM model checker [1] to derive the
channels representing the behavior of the protocols we analyze.

The general procedure to compute the channel corresponding to a protocol
is the following. (1) We identify the sets X and Y representing, respectively, the
secret and observable values of the protocol. (2) We implement the protocol in
PRISM, creating variables that can uniquely identify each element on the sets
X and Y. A variable that signals the end of the protocol’s execution is used.
(3) We set the variables accordingly for each value x ∈ X , and use PRISM to
calculate the conditional probability p(y | x) for each y ∈ Y.

The third step can easily be accomplished by observing the first step, with
the aid of an operator present in PRISM. Given a model, it is possible to verify
the probability of taking a path from the initial state that respects a property
pathprop with the operator P =? [pathprop]. If the second step is correctly
observed, there is, for any y ∈ Y, a way to make pathprop equivalent to the
path formula Fy, where F is the finally operator. This path formula holds if and
only if the system’s output equals y. By setting the variables of the system to
make the secret value x ∈ X for all x, we can use this operator to systematically
calculate p(y|x) for every pair x, y, which defines our channel.

Next we illustrate how our general procedure can be applied to derive the
channels corresponding to all variations of the protocols we consider.
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4.1 Modeling the Dining Cryptographers

We now discuss how to derive the channel for both variations of the DC protocol:
cycle-DC, and complete-DC. The first task is to characterize X and Y, and to
devise a suitable representation of them to implement in our code.

Let N denote the number of cryptographers in an instance of the Dining
Cryptographers protocol. In both variations of the protocol, the secret value is
the identity of who pays the bill. We have, then, X = {c1, c2, ..., cN , n} where each
ci represents the case in which cryptographer ci is the payer, and n represents
in which the case the NSA pays.

The observable values of the protocol, in both variations, are the public an-
nouncements made by all cryptographers. We can represent these announcements
by a string of N bits, where the value of the bit at position i corresponds to
the announcement of the cryptographer ci. To ilustrate, consider a protocol with
four cryptographers. If c1 and c2 announced 1, and c3 and c4 announced 0, this
would be represented by the string 1100. Hence, we can represent all possible
outputs by taking Y = {0, 1}N .

Having established X and Y, as well as how to translate their elements into
variables in the code, we can write the protocol in PRISM language. Our imple-
mentation is available online [2]. Table 2 depicts the channels (omitting the NSA
output) computed by PRISM for cycle- and complete-DC, with the probability
of heads equal to 0.7.

Ccycle-DC 1000 1100 0010 1110 0001 1101 1011 0111

c1 0.2482 0.1218 0.0882 0.1218 0.1218 0.0882 0.1218 0.0882
c2 0.1218 0.2482 0.1218 0.0882 0.0882 0.1218 0.0882 0.1218
c3 0.0882 0.1218 0.2482 0.1218 0.1218 0.0882 0.1218 0.0882
c4 0.1218 0.0882 0.1218 0.0882 0.2482 0.1218 0.0882 0.1218

(a) Channel Ccycle-DC for the cycle-DC protocol.

Ccomp-DC 1000 1100 0010 1110 0001 1101 1011 0111

c1 0.1666 0.1218 0.1218 0.1218 0.1218 0.1218 0.1218 0.1026
c2 0.1218 0.1666 0.1218 0.1218 0.1218 0.1218 0.1026 0.1218
c3 0.1218 0.1218 0.1666 0.1218 0.1218 0.1026 0.1218 0.1218
c4 0.1218 0.1218 0.1218 0.1026 0.1666 0.1218 0.1218 0.1218

(b) Channel Ccomp-DC for the complete-DC protocol.

Table 2: Channels for both variations of the Dining Cryptographers protocol,
with the probability of heads equal to 0.7
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4.2 Modeling Crowds

We now discuss how to derive the channel for both variations of the Crowds
protocol: original Crowds, and grid-Crowds. The first step is to identify what
the sets X and Y shall represent, and to find a suitable implementation of them.

In both variations of the protocol, the secret value is the identity of the
initiator of the request. There is no need to represent corrupt users, as we assume
they do not initiate requests. Therefore, we can represent the secret values set
of Crowds with N honest users by X = {u1, u2, ..., uN}.

The observable values are different in the two variations. In original Crowds,
the server does not gain any information by identifying the user who forwarded
the request to him, therefore we must have one output value di representing the
scenario in which each honest user ui was detected by a corrupt one, and another
case s representing the scenario where the server receives the request. Therefore,
we have Y = {d1, ..., dN , s}. In grid-Crowds, however, the identity of a user that
forwards a request to the server is relevant. We need, therefore, to break the
output s into multiple ones, indicating which user forwarded the request to the
server. Thus, in this second variation, we must have Y = {d1, ..., dN , s1, ..., sN}.

Having determined X and Y, it is possible to implement the protocols in the
PRISM language. Our implementation of all protocols are available online [2].

5 QIF analyses of the protocols

We now analyze the information-leakage of the channels corresponding to the
protocols. Recall that the smaller the capacity of a channel (c.f.r. Section 2.1),
the less information an adversary will obtain about the secret by observing the
output of that channel, and the safer, hence, the channel is considered.

5.1 Analyses of the Dining Cryptographers

We implemented both variations of the Dining cryptographers for 5, 6, 7, 8, and
9 cryptographers. Our results suggest the complete-DC variation is safer than
the cycle-DC variation, yielding smaller values for all capacities measured.

Results for multiplicative capacities. It has been proven [3] that the multi-
plicative capacity L∀[π,C] (which quantifies over all gain-functions g for a fixed
prior π) collapses into the multiplicative capacity L∀[∀, C] (which quantifies over
all priors and gain-functions) when the prior π has full-support. Since we con-
sider any cryptographer can be the payer, the prior has full support, and we can
focus only on the latter capacity, which can be computed as follows.

Theorem 1 ([9]) Given channel C:X×Y→R, L∀[∀, C]= log
∑
y∈Y max

x∈X
C(x, y).

Figure 2 shows the values of this capacity for both variants of the DC pro-
tocol, and varying values of the probability p of heads. Note that the graph of
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(a) L∀[∀, C], 4 cryptographers. (b) L+
∀ [πu, C], 4 cryptographers.

(c) L∀[∀, C], 7 cryptographers. (d) L+
∀ [πu, C], 7 cryptographers.

(e) L∀[∀, C], 9 cryptographers. (f) L+
∀ [πu, C], 9 cryptographers.

Fig. 2: Capacities for both variations of the Dining Cryptographers, and different
probabilities of heads. The x-axis, for the value of probability, is not in scale.

capacity must be symmetric w.r.t. p = 0.5, for a coin with probability of heads
1−p is nothing more than a coin with probability of tails p.

Note also that in all instances of both variations, the minimum capacity is 1,
and occurs at p = 0.5. This reflects the fact that, if the coins are fair, the only
information leaked is whether the NSA is paying the bill. When p = 1, however,
all coin tosses yield heads, and any observer can deduce with certainty who is
paying the bill from the announcements of the cryptographers. In this case the
capacity reaches its maximum, being log(n + 1) for n cryptographers, for the
outputs of the protocol always reveal the payer’s identity.

It is clear from the graph that the complete variation leaks less than the
cycle one. Also, while the capacity of the cycle variation increases rapidly even
when p approaches 0.5, the complete variation is less susceptible to these small
changes, maintaining information leakage close to 0.
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Results for additive capacity. The additive capacity L+
∀ [π,C] (quantifying

over all gain functions g, for a given prior π) can be computed by L+
∀ [π,C] =∑

x,y π(x)|C(x, y) −
∑
x′ π(x′)C(x′, y)| [3]. Note that, unlike its multiplicative

counterpart, this capacity actually depends on the prior π.
Figure 2 shows the values for this capacity for an uniform prior πu, and

varying probabilities p of heads. The graphs confirm that the minimum and
maximum values of information leakages occur, respectively, for p = 0.5 and
p = 1. We can see that complete-DC is always more secure than cycle-DC, and
its capacity keeps almost unaltered until p deviates substantially from 0.5.

5.2 Analyses of Crowds

We implemented both variants of the Crowds protocol for 9 users, and from 1
up to 3 corrupted users.

In particular, in grid-Crowds, we need to consider another variable: the po-
sition of the corrupt users makes a great difference in the channels’ capacities.
Figure 3 shows all possible positions for three corrupt users on a 3x3 grid, up to
symmetry. (Recall that the edges going off the grid connect at opposite sides—
e.g., user 1 can communicate with user 3 and with user 7.) If, for instance, the
corrupt users are 1,2 and 3, each honest user would be connected to only one
corrupt user. If the corrupt were 1,5 and 9, however, each honest user would
be connected to two corrupt ones. Therefore, the chance that the initiator will
forward a message directly to a corrupt user is 20% on the first scenario, and
40% on the second one (please recall that the initiator may send the message
to itself). Thus, it is natural to expect that the capacities for the former will be
smaller than for the latter.

Fig. 3: All positions (up to symmetry) for three corrupted users (colored in dark)
on a 3x3 grid.

Results for multiplicative capacities. We compute L∀[∀, C] using Theo-
rem 1. Figure 4 shows the corresponding values for 9 users, both in original DC
and in grid-DC. Note that the probability pf of forwarding does not influence
multiplicative capacity in the original DC, which confirms a known result from
the literature [17]. However, we can see that it does for the grid variation. To
understand this, notice that even if the originator does not forward the message
to a corrupt user at first, his immediate neighbors are more likely to receive
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the message than the users he cannot communicate with. For example, if user
8 is detected in the 3x3 grid, it is more probable that the originator was user
7 than user 4. Therefore, as the expected number of interactions between users
decreases with pf , the more likely it is that a message is detected by a corrupt
user or forwarded to the server near its originator.

(a) L∀[∀, C], 1 corrupted user. (b) L+
∀ [πu, C], 1 corrupted user.

(c) L∀[∀, C], 2 corrupted users. (d) L+
∀ [πu, C], 2 corrupted users.

(e) L∀[∀, C], 3 corrupted users. (f) L+
∀ [πu, C], 3 corrupted users.

Fig. 4: Capacities for both variations of Crowds, and varying number of corrupt
users. The brackets in the captions indicate positions of corrupt users.

As we can verify, the capacities of the channels on the grid variation varies
considerably according to the position of the corrupt users. The results also
reiterate our intuition that, for the 3x3 grid with three corrupt users, the protocol
where 1,2 and 3 are the corrupt users would be the safer one.

It is also interesting to notice that some choice of corrupt users in grid-DC
actually yield smaller capacities than the original variation. For 9 users with 3
corrupt ones, for instance, the odds of the initiator being detected are 33%. As
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we have seen, when the corrupt users are 1, 2 and 3 in the 3x3 grid, this chance
is 20%, and our data suggest that this difference is sufficient to compensate the
extra leakage usually caused by the grid structure.

Results for additive capacity. To calculate this capacity, we again use the
equation on section 5.1 and consider a uniform prior πu. The results are shown
on Figure 4. We can verify that the additive capacities for the original Crowds
protocol also do not vary with pf . Also, they behave quite differently from their
multiplicative counterparts. For example, consider again the protocol with 3
corrupt users in positions 1, 2 and 3 in the 3x3 grid. The multiplicative capacity
of this scenario is always smaller that of the regular protocol, but this is not true
at all for the additive capacity.

6 Related work

In this paper we have explored the use of model checking to compute bounds on
quantitative information flow. Our approach is to express protocols as transition
systems and then to use probabilistic model checking to compute a channel
abstraction. The benefits of this approach are that protocols can be expressed
in a direct way, and their abstraction as a channel can be easily computed.
By computing the whole channel, rather than say a specific leakage or capacity
measure, we make it available for use with any appropriate gain function.

Other work on computing information flow [28] gives a semantics of pro-
grams as hidden Markov models, of which channels are a special case. This
allows hyper-distributions—a compact form of posterior joint distributions—to
be computed directly. With this generality the monadic features of functional
programming languages can be exploited to compute leakage w.r.t. arbitrary
gain functions [29].

Other approaches to computing information flow typically use alternative
measures. For example, McCamant and Ernst [26] provide estimates for the
quantity of bits flowing from input to output (of programs) using network flow
capacity. Novakovic [30] uses a model based on mutual information (Shannon)
and min-entropy; the starting point for the analysis is a program expressed in
a probabilistic imperative language, with an interpretation based on DTMCs.
High Order Logic theorem provers were used by Hölz and Nipkow[21] to study
properties of the Crowds protocol and its behavior regarding Shannon entropy,
and by Helali et al. [19] to derive general results regarding min-entropy and belief
min-entropy. Finally, Phan et al. [32] use reliability analysis to quantify leaks,
also based on Shannon- and min-entropy.

7 Conclusions and Future Work

In this work we presented a systematic way of deriving channels representing
the behavior of security protocols, and used these channels to derive robust
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information-flow guarantees about these protocols. More precisely, we provided
the first analyses of additive and multiplicative g-capacities of two versions of
the Dining Cryptographers and the Crowds anonymity protocols. The bounds
provided hold irrespectively of the probability distribution on secret values, or of
the interests and goals of an adversary, constituting, to the best of our knowledge,
the most general information-flow analyses of such protocols ever performed.

Future work could lead to a general purpose tool support to allow the com-
putation of critical information flow properties. Moreover, we want to explore
algorithms for computing capacities for systems whose possible contexts of exe-
cution are limited in a more restricted set of priors and gain-functions.
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