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Abstract—Peer-to-Peer live streaming systems help content
providers and distributors drastically reduce bandwidth costs by
sharing costs among peers. Researchers have dedicated significant
effort developing techniques to discourage or exclude uncooper-
ative peers from peer-to-peer systems. However, users are often
unable to cooperate, e.g., users using a mobile device with limited,
costly bandwidth. We study the impact of uncooperative peers
on video discontinuity and latency using PlanetLab. We find
that simple mechanisms, like forwarding video data requests to
cooperative peers instead of wasting effort sending requests to
uncooperative peers, allows peer-to-peer live streaming to serve
50% of uncooperative peers without performance degradation.
We argue that denying service to uncooperative peers may not
be the best long-term approach; our findings suggest that peer-
to-peer live streaming can support uncooperative peers.

I. INTRODUCTION

Peer-to-peer (P2P) networks are used as a content delivery
platform to improve the scalability of live streaming systems.
Popular live streaming P2P systems, such as TvAnts, UUSee,
SopCast, PPLive, and PPStream can have more than eight
million users simultaneously watching streams.1 This number
is likely to go up as broadband penetration increases.

P2P live streaming relies on peer cooperation: peers are
expected to contribute upload bandwidth redistributing the
content they get from one peer to another. Unfortunately,
peers may be unwilling or unable to contribute as expected.
Uncooperative peers may incur additional load on the video
server, compromising system scalability and performance [1].

Significant research effort has been dedicated to the de-
velopment of mechanisms to discourage uncooperativeness.
For example, incentive mechanisms may reward peers with
fewer ads or improved stream quality proportional to their
contribution [2], [3]. Detection mechanisms try to identify
uncooperative peers in order to take corrective measures like
removing the peer from the network or reducing their quality of
service [4], [5]. Unfortunately, most mechanisms to discourage
uncooperativeness incur non-negligible network overhead (e.g.,
coordination messages), increase system complexity (e.g., ac-
counting of cryptographic receipts [4]), or impose restrictions
that limit system performance (e.g., random peer selection [5]).

In this paper, we study the impact of free riders, i.e.,
extremely uncooperative peers that never upload data, on a
real P2P live streaming system. Our system allows control
over peer behavior and fine-grained monitoring, normally
impossible using proprietary P2P live streaming systems. We
perform experiments using PlanetLab [6] to assess the impact
of free riders on video playback latency and discontinuity.

1Reported on http://www.aplus.pptv.com/aboutus/en.-July2013.

We also quantify the impact of free riders on server and
cooperative peer workloads.

We make three contributions. First, we show that simple
modifications, like having uncooperative peers inform their
partners that they are unable or unwilling to upload chunks,
enables P2P live streaming to serve a large fraction of unco-
operative peers without performance degradation (Sec. IV-A).
This modification helps because it allows peers to avoid
wasting time and bandwidth on chunk requests unlikely to
be answered. Second, we show that uncooperative peers that
do not inform their partners that they are unable or unwilling
to upload chunks, e.g., because of software limitations, client
misconfiguration, or malicious intent, cause significant perfor-
mance degradation (Sec. IV-B).

Third, we propose the Simple Unanswered Request Elim-
inator (SURE), a modification to the chunk request scheduler
that avoids wasting time and bandwidth even if uncooperative
peers do not inform their partners (Sec. IV-C). Our experiments
show that a P2P live streaming system using SURE can sustain
up to 50% of free riders. Compared to a system without
free riders, sustaining 50% of free riders increase the median
latency by 0.95 seconds and increases average chunk miss rate
from 1.09% to 1.59% (still below an acceptable chunk miss
rate of 4% [7]). Finally, we show that the additional workload
incurred by free riders is evenly balanced among contributing
peers and is manageable (Sec. IV-D).

We argue that uncooperative peers occur naturally. For
example, it is unrealistic to demand the same contribution from
a mobile user with a costly low-bandwidth connection and
from a broadband user. Even if a peer is uncooperative for a
while, it does not mean that he must be punished; this peer may
cooperate normally in a very near future. Instead of dedicating
system resources to discourage uncooperativeness [2]–[5], our
findings suggest that P2P live streaming systems can tolerate
uncooperative peers, increasing the number of viewers, without
significant performance degradation.

II. P2P LIVE STREAMING SYSTEM

One limitation of proprietary commercial systems is that
they do not allow control over peer behavior or collection of
arbitrary, fine-grained measurements. We implement a P2P live
streaming system based on the mesh-pull approach [8], similar
to SopCast and PPLive, to address these limitations.

We define a P2P live streaming system as a system with
a set of peers that collaborate with each other to watch a live
media transmission. The server is a special peer that encodes
the video, splits the video into chunks (a chunk can contain
multiple frames), and starts the transmission.
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Each peer p has a set of partner peers Np that p connects
to and exchanges video chunks with. In order to join a live
streaming channel, a peer p registers itself at a centralized
bootstrap server, which returns to p a subset of all peers
currently active in the system as potential partners. Peer p
selects peers from this subset and tries to establish partnerships
with them. Successfully established partnerships determine
Np. When p detects that one of its partners, say p′, has been
silent for longer than a predefined time period, p removes p′

from Np. In this case, peer p may also contact the bootstrap
server to obtain a new list of potential partners to replace the
old partnership. In this work, we set the default number of
partners (also called the neighborhood size) to 20, similar to
other commercial P2P live streaming systems [9].

Each peer has a local buffer to store its video chunks.
Periodically, peers exchange buffer maps with their partners
to inform them what chunks they have available. Each peer
periodically checks which chunks it needs, identifies which
partners can provide missing chunks, and sends chunks re-
quests accordingly. Peers may schedule requests depending
on chunk availability, e.g., rarest chunk first, or they may
schedule depending on playback time, e.g., earliest deadline
first. The rarest first policy tries to replicate a chunk as
soon as possible while the earliest deadline policy tries to
make playback smoother. In this work, we schedule chunk
requests using the earliest deadline first policy. If multiple
partners have a chunk, the scheduler chooses one of them at
random. We do not limit the number of simultaneous (pending)
requests. We limit the number of request retries to six to
control each peer’s opportunities to download a chunk and
make download opportunities independent of buffer size. A
peer considers a request has timed out if it is not answered
within 500 milliseconds. Finally, peers immediately serve the
requests they receive in order of arrival.

Peers send monitoring reports to the bootstrap server
every ten seconds. Reports currently include the number of
chunks generated (only reported by the video server), sent,
received, and the ones that missed their playback deadline; the
number of requests sent, answered, and retried; the average
forwarding path length, retry count, and time of arrival of
received chunks; neighborhood size; and the number of
duplicate chunks received. We use peer reports to compute
the performance metrics we evaluate: chunk latency and the
chunk playback deadline miss rate.

III. EXPERIMENTAL METHOD

Our evaluation relies on real experiments that we have
conducted on PlanetLab. We configured video and bootstrap
servers in our university’s network and used about 450 Planet-
Lab nodes as peers. The video server streams a 420 kbps video
(about 40 chunks per second). PlanetLab nodes run multiple
simultaneous experiments, so each peer has variable CPU and
bandwidth constraints. Thus, we do not impose any additional
resource constraints on peers.

All peers join the live transmission during an initial period
of 60 seconds, with joining times chosen randomly following
an uniform distribution. Each experiment lasts 8 minutes, and
we discard data from the first and last 90 seconds (i.e., the
warm up and cool down periods).

We consider different scenarios, varying the behavior and
fraction of free riders. For each type of free rider behavior, we
vary the fraction of free riders from 0% to 95% in steps of 5%.
For each configuration, we run at least ten experiments and
report results over all experiments. To maximize the impact of
free riding, we do not use any mechanism to choose or abandon
partnerships (e.g., reputation systems). In other words, peers
do not drop or punish uncooperative partners.

We define two types of free rider, namely conscious and
oblivious. Conscious free riders inform their partners that they
are unwilling or unable to upload data. This behavior may
be coded in the software or chosen by users. In our system,
conscious free riders request chunks as normal but always
advertise empty buffer maps. As a consequence, no peer ever
wastes time and bandwidth sending requests to conscious free
riders. Oblivious free riders do not inform their partners that
they are unwilling or unable to upload data. This behavior may
happen if the software does not make provisions for free riders,
if the user misconfigures the client, or due to malicious intent.
In our system, oblivious free riders request chunks as normal
and advertise buffer maps with the chunks they have, but never
upload data (i.e., never answer requests). Oblivious free riders
may receive requests and degrade system performance, as their
partners will have to retransmit chunk requests after waiting
for answers that never arrive.

We quantify the impact of uncooperativeness on P2P live
streaming systems using chunk latency and chunk playback
deadline miss rate. Chunk latency, also called diffusion latency,
is the delay between the creation of chunk (at the video server)
and its reception by a peer. We define the playback deadline
miss rate as the fraction of chunks that are not received before
their playback deadline. High latency is undesirable as peers
will play outdated content (e.g., a neighbor cheering a goal
that you will watch ten seconds from now). Missed chunks
cause flickering or interruption, specially when many chunks
are lost in sequence.

IV. EVALUATION

In this section we evaluate the impact of free riders on
P2P live streaming performance. We show that conscious free
riders have minor impact on performance, but that oblivious
free riders seriously degrade performance. We then introduce
SURE, the Simple Unanswered Request Eliminator, to mitigate
the impact of oblivious free riders. Finally, we show that the
increased workload caused by free riders is evenly balanced
among cooperative peers and is manageable.

Unless stated otherwise, we aggregate results from all ten
experiments performed for each scenario and the coefficient of
variation of reported averages are below 0.5.

A. Conscious Free Riders

Fig. 1 shows the distribution of average chunk latency
over all peers in the channel. We plot multiple curves varying
the fraction of conscious free riders. The average latency
is representative of a peer’s chunk latencies: the standard
deviation of chunk latencies is less than 1 second for 93% of
peers. Fig. 1 shows that latency stays stable if the number
of conscious free riders is less than 10%. As the fraction
of free riders increases, the fraction of partners of a peer
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Figure 1: Distribution of average chunk latency for varying
fractions of conscious free riders.
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Figure 2: Distribution of chunk playback deadline miss rate
for varying fractions of conscious free riders.

willing to contribute decreases. This shortage of contributing
partners causes chunk forwarding paths to become longer.
The median chunk forwarding path length is 3.5 for 10%
of free riders, but increases to 4.1 for 50% of free riders.
Longer forwarding paths increase latency since there are delays
associated with buffer map advertisements, chunk requests, and
the data transfer itself.

Fig. 2 shows the distribution of chunk playback deadline
miss rate over all peers. Again, we plot various curves varying
the fraction of conscious free riders. We note that some
chunks may miss their playback deadline for factors other than
uncooperativeness. For instance, our results include PlanetLab
nodes that may be overloaded, lacking enough network band-
width and CPU to download and process chunks.

The chunk miss rate is qualitatively similar for fractions
of free riders below 50%. With less than 50% of free riders,
65% of peers receive all chunks before their playback deadline
and 96% of peers experience chunk miss rates lower than
4% (acceptable video quality [7]). Chunk miss rate increases
significantly with 70% of free riders. Peers have few partners
that can provide chunks and they may fail to receive a chunk
before its playback deadline. If a content provider intends to
sustain a system with 70% (or more) of free riders, it may
need a hybrid architecture with well-provisioned support peers
to cover the missing resources.
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Figure 3: Distribution of chunk latency for various fractions
of oblivious free riders.

B. Oblivious Free Riders

When a peer requests a chunk from an oblivious free rider,
his request will time out and he will need to retry later. In
particular, the chance that retries are (repeatedly) requested to
an oblivious free rider is proportional to the fraction of free
riders in the network.

We compare the number of request retries in scenarios with
conscious and oblivious free riders. Retries are rarely needed
when free riders are conscious (e.g., when a peer removes a
chunk from its local buffer while a request is in transit). Thus,
peers usually make a single request per chunk, with a median
of 1.007 tries per hop in the chunk forwarding path. When free
riders are oblivious, the number of retries to obtain a chunk
increases significantly. For instance, with 50% of oblivious free
riders, the median number of tries for each hop on the chunk
forwarding path is 1.4.

Consecutive retries waste bandwidth and increase average
chunk latency. Moreover, consecutive retries may increase the
chunk miss rate if no retry succeeds before the chunk playback
deadline. Fig. 3 shows the distribution of average chunk latency
over all peers in the channel. Even 10% of oblivious free
riders increase the median of the distribution of average chunk
latency to 3.28 seconds, a 15% increase compared to the
scenario without free riders. This is significantly worse than
having 10% of conscious free riders (Fig. 1), which have
almost no impact on latency. System performance gets even
worse when the fraction of oblivious free riders increases. The
median average chunk latency is 6.49 seconds if the channel
has 50% of free riders, a 127% increase compared to the
scenario without free riders. Similar degradation happens for
the chunk miss rate (not shown).

C. Simple Unanswered Request Eliminator (SURE)

Chunk request retries are the major difference between
scenarios with conscious and oblivious free riders. If we
could avoid chunk requests to oblivious free riders in the
first place, we would limit their negative impact on system
performance. We introduce and evaluate SURE, a modification
to our system’s request scheduler that avoids excessive retries
caused by oblivious free riders. Our goal is to show that
even simple solutions can significantly reduce the impact of
uncooperativeness on P2P live streaming systems.
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Figure 4: Distribution of average chunk latency for different
free rider behaviors and SURE (50% of free riders).
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Figure 5: Distribution of chunk playback deadline miss rate for
different free rider behaviors and SURE (50% of free riders).

SURE maintains a counter of pending requests for each
partner. Whenever a peer sends a chunk request to a partner, it
increments that partner’s pending requests counter. Whenever
a peer receives a chunk from a partner, it decrements that
partner’s counter. The idea is that counters for oblivious free
riders will increase rapidly, while counters for contributing
peers will remain low. When sending a chunk request, peers
choose the partner with the smallest counter among partners
with that chunk. If multiple partners have the same amount of
pending requests, SURE picks one at random.

Fig. 4 shows the distribution of average chunk latency over
all peers for 50% of conscious and oblivious free riders (curves
“conscious” and “oblivious” in Fig. 4 are the same as “50%”
in Figs. 1 and 3). We also plot the chunk latency for a scenario
with 50% of oblivious free riders when using SURE. SURE
reduces the number of retries. The chunk latency is almost
equivalent to the baseline scenario of conscious free riders.
Results for different fractions of free riders lower than 50%
are qualitatively similar.

Similarly, Fig. 5 shows the distribution of chunk playback
deadline miss rate for 50% of conscious and oblivious free
riders; as well as the miss rate for oblivious free riders
when using SURE. Again, SURE reduces the chunk miss
rate to levels equivalent to those of the baseline scenario with
conscious free riders. In particular, SURE reduces by half the
fraction of peers with chunk miss rate higher than 4%.

Table I: Impact of Free Riders on Workload Distribution

Free Uncooperative Cooperative Altruistic
Riders 0 < C ≤ 1 1 < C ≤ 5 C > 5

% % E[C] % E[C] % E[C]
0% 69.9% 0.34 26.9% 1.86 3.2% 8.15

10% 59.2% 0.35 27.3% 1.86 3.5% 8.02
30% 40.9% 0.38 24.9% 1.93 4.2% 8.66
50% 22.6% 0.42 22.0% 2.07 5.4% 8.31
70% 7.3% 0.43 16.1% 2.41 6.5% 8.86
75% 5.5% 0.41 12.9% 2.61 6.6% 9.71
80% 3.6% 0.31 8.3% 2.83 8.1% 9.28
85% 2.8% 0.26 4.2% 3.39 8.1% 10.54

SURE works because it identifies uncooperative peers
with few interactions. When a peer joins the channel, all its
partners have zeroed pending requests counters and it may send
requests to uncooperative partners. However, uncooperative
partners’ pending requests counters increase quickly and they
are avoided until the end of the partnership. Another advantage
of SURE is that it balances the load among peers. Consider
that two partners have many desirable chunks and the same
value on their pending requests counters. When SURE issues
a request to one of the partners and increments its pending
requests counter, it will prefer the other partner for the next
request as it will have a smaller counter. We present SURE to
show that even simple solutions allow P2P streaming systems
to mitigate most of the impact of uncooperative peers on
system performance. We leave the evaluation of recovery
mechanisms (e.g., slowly decrementing counters over time,
optimistic unchoke) as future work. Recovery mechanisms
could improve performance in long videos or in scenarios
where peers change behavior. Finally, we note that other
alternatives to eliminate unanswered requests are possible.

D. Network Load Induced by Uncooperative Peers

A natural question is what happens to the workload
distribution when uncooperative peers do not contribute to
the system’s aggregate upload capacity; there must be nodes
bearing the workload. Tab. I shows what happens to the
workload distribution when the fraction of free riders increases.
We categorize peers using their cooperation level C, i.e., the
ratio of a peer’s average upload rate relative to the video bitrate
throughout the experiment. We categorize peers as free riders if
C = 0, uncooperative if 0 < C ≤ 1, cooperative if 1 < C ≤ 5,
and altruistic if C > 5. Tab. I presents the fraction of peers
in each category and their average cooperation level. We show
results from the experiments with oblivious free riders and
SURE, but results with conscious free riders are quantitatively
similar.

Even when there are no free riders in the system, most
peers are classified as uncooperative. A large fraction of
network load is carried by a small number of cooperative
and altruistic peers. This unbalanced load distribution happens
because (i) the P2P system does not use any load balancing
scheme and because (ii) peers closer to the server receive
chunks early and have more time to redistribute chunks than
peers far from the server. Uncooperative peers occur due to in-
trinsic protocol mechanisms, as also observed in SopCast [10].
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As the fraction of free riders increases, workload on coop-
erative peers increases and they shift to the altruistic category.
However, the average workload per peer in the cooperative and
altruistic category remains stable close to 2 and 8 stream rates,
respectively, if there are less than 70% of free riders.

Tab. I shows that 70% of peers are uncooperative even
when there are no free riders (first line). However, previously
cooperative peers are turned into free riders in scenarios with
more than 70% of free riders, resulting in significant workload
increase on the remaining cooperative and altruistic peers.
After this turning point, system behavior converges quickly
to a client-server model (like Youtube), where most peers
contribute nothing and a few well-provisioned peers sustain
all the workload. Finally, we note that although 70% of free
riders is the upper limit before system collapse, performance
degradation starts after 50% of free riders, as discussed in
Secs. IV-A, B, and C.

V. RELATED WORK

Impact of free riders. One of the first studies about free
riding identified that 63% of Gnutella peers never answered a
file search query [1], meaning that few peers were responsible
for supplying most of the data and maintaining the network.
Since then, several works have studied the impact of free
riding on P2P file sharing and streaming systems (see the work
of Karakaya et al. [11] and Moltchanov [12] and references
within). More similar to our work, some studies on P2P
file sharing networks have shown that free riders are not as
detrimental as originally believed [13], [14]. For example,
Meulpouder et al. [14] found that in closed communities that
enforce high cooperation levels, peers compete to upload data
but may lack opportunities to do so. Thus, even peers willing
to cooperate might not survive the upload competition, being
punished or removed from the file sharing community.

Free riding mitigation. Researchers have studied two main
approaches to the problem of uncooperativeness in live stream-
ing: first, the development of incentive mechanisms to encour-
age cooperation, and second, the development of techniques
to identify and punish uncooperative peers. A well-known
incentive mechanism used in P2P file sharing is BitTorrent’s
tit-for-tat [15]. Unfortunately, tit-for-tat is inadequate for live
streaming. Tit-for-tat forces balanced pairwise data exchanges,
which are too restrictive to enable live streaming [4]. Some
works have attempted to use tit-for-tat as a feature, where
uncooperative peers experience degraded quality of service,
even at overprovisioned scenarios [16].

Contracts [4] is a mechanism to identify uncooperative
peers that uses system resources (bandwidth and CPU) to
audit peer cooperation using cryptographic receipts of chunk
transfers. LiFTinG [5] identifies uncooperative and malicious
peers based on their partnerships. Unfortunately, LiFTinG
requires that peers make partnerships at random, which may
be suboptimal, reducing system performance. Our argument
in this paper is that P2P live streaming systems can sustain
a large fraction of uncooperative peers without performance
degradation. We believe that, unless a system is under attack,
these identification mechanisms may be unnecessary and even
waste system resources.

VI. CONCLUSION

P2P live streaming is an important application. The impact
of uncooperative peers on system scalability and performance
has been a major concern. In this paper, we identify that
request retries caused by uncooperative peers’ inability or
unwillingness to answer video chunk requests waste bandwidth
and time, degrading performance. We also show that P2P live
streaming can deal satisfactorily with uncooperative peers by
implementing measures that avoid sending requests to uncoop-
erative peers. For instance, our PlanetLab-based experiments
show that our P2P live streaming system can sustain 50%
of free riders with negligible performance degradation. We
also find that the workload incurred by free riders is evenly
balanced among contributing peers and is manageable.

We argue that systems should tolerate free riders. Instead
of dedicating resources to discourage or remove uncooperative
peers from the system, researchers should focus on designing
mechanisms to increase system scalability and performance in
face of free riders, ultimately increasing the number of viewers.
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