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a b s t r a c t

Live streaming media applications are becoming more popular each day. Indeed, some important TV
channels already broadcast their live content on the Internet. In such scenario, Peer-to-Peer (P2P) appli-
cations are very attractive as platforms to distribute live content to large client populations at low costs. A
thorough understanding of how clients of such applications typically behave, particularly in terms of
dynamic patterns, can provide useful insights into the design of more cost-effective and robust solutions.

With the goal of extending the current knowledge of how clients of live streaming applications typi-
cally behave, this paper provides a detailed characterization of clients of SopCast, a currently very popular
P2P live streaming application. We have analyzed a series of SopCast transmissions collected using
PlanetLab. These transmissions are categorized into two different types, namely, major event live trans-
missions and regular (or non-event) live transmissions. Our main contributions are: (a) a detailed model
of client behavior in P2P live streaming applications, (b) the characterization of all model components for
two different types of transmissions in the SopCast application, (c) the identification of qualitative and
quantitative similarities and differences in the typical client behavior across different transmissions,
and (d) the determination of parameter values for the proposed client behavior model to support the
design of realistic synthetic workload generators.

! 2012 Elsevier B.V. All rights reserved.

1. Introduction

Streaming media applications are becoming more popular each
day on the Internet. In fact, there are currently several video
authoring resources, which make the creation and publishing of
streaming media straightforward. This leads to a snowball effect:
more content attracts more viewers, who, in turn, generate more
content. Live media streaming, in particular, has attracted a grow-
ing number of users and broadcasters. For example, major televi-
sion companies, such as NBC [1] and ESPN [2], distribute live
content on the Internet, broadcasting their daily programs [3]. In
addition, more and more home users are transmitting live content
from their own desktops.

Live streaming media applications used to be based on the tra-
ditional client–server architecture. However, due to limited client
scalability, a major weakness commonly associated with such cen-
tralized platforms, decentralized Peer-to-Peer (P2P) architectures
are being increasingly adopted as platforms for live media distribu-
tion. In P2P systems, the clients (or peers) participate actively in

content delivery, thus sharing with the server the total require-
ments for resources (e.g., processing and bandwidth capacities),
and ultimately the total costs. In comparison with centralized
architectures, in which the server sets up an independent (i.e.,
unicast) transmission to each client, the cost associated with each
P2P live transmission imposed on the server is much lower. In
other words, at a fixed total server cost, a P2P system is able to
serve a larger number of simultaneous clients. Indeed, there are
several currently very popular P2P live streaming applications.
Some of them, such as PPLive and SopCast,1 have reportedly
reached the mark of 100 thousand simultaneous clients [4].

A large number of previous studies address the design of live
streaming media protocols [5–9] and the structural organization
of the P2P overlay network [10–12]. There are also some efforts
towards characterizing the behavior of live streaming clients
[13–17]. Client behavior patterns, which ultimately translate into
system load patterns, directly impact system performance. Thus,
a thorough understanding of them is key to drive future designs
and optimizations [18,19]. However, previous analyses of P2P live
streaming systems [13–17,20–23] address only a few aspects of
client behavior (e.g., arrival process and client lifetime in the
system), as several of them analyze the system from a different
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perspective (e.g., network traffic patterns [13,14] and quality of
video transmissions [20]). In particular, we are not aware of any
detailed characterization of client sessions, which indirectly reflect
client dynamic behavior patterns (i.e., churn). As pointed out in
[24], such patterns may have significant impact on P2P live stream-
ing performance.

In this context, this article provides a detailed characterization
of how clients of a popular P2P live streaming media application,
namely SopCast, typically behave. Aiming at extending the knowl-
edge provided by previous studies, our characterization addresses
several aspects of client behavior, including client dynamic pat-
terns. Our main goal is to provide data to support the future
generation of realistic synthetic workloads, which, in turn, can be
used to support both the evaluation of P2P live streaming protocols
and the design of new P2P live applications.

Our characterization relies on a set of traffic logs collected from
three different SopCast channels, using 421 crawlers in the Planet-
Lab network [25]. Two channels are Chinese TV channels delivering
high bit-rate live news and sport content mostly to Chinese users.
The third channel is a Brazilian entertainment channel transmit-
ting live sport events at low bit-rate, mostly to Brazilian users.
The collected traffic logs are used to reconstruct client behavior
patterns during several transmissions of each channel. The moni-
tored transmissions are categorized into two groups, based on
the type of transmitted content: whereas the Brazilian channel
transmissions broadcast decisive and important live events (i.e.,
the final games of a major soccer championship), the Chinese chan-
nel transmissions correspond to regular (i.e., non-event) live
content (e.g., live TV news). In total, we characterize client behav-
ior over 35 non-event transmissions and 2 event transmissions.

To drive our characterization, we propose a hierarchical model
that captures the behavior of a client while watching a given chan-
nel transmission. At the higher session level, the model captures the
multiple viewing sessions that the client may have of the given
channel transmission. In other words, it captures the client dy-
namic behavior during the transmission. At the lower partnership
level, the model captures the interactions the client establishes
with one or more partners during a given session. We characterize
a list of model parameters at each level including session inter-
arrival times, number of sessions per client during a single
transmission, session durations (or ON times), time intervals
between consecutive sessions from the same client (or OFF times),
number of partnerships, and partnership durations. Moreover, we
analyze multiple transmissions of each type (event or non/event)
separately, so as to account for possible variations across different
transmissions.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work. Section 3 briefly reviews how a P2P live
streaming system works and introduces the hierarchical model
used to characterize client behavior in SopCast. Section 4 intro-
duces the analyzed SopCast channels and our data collection meth-
odology. Section 5 discusses temporal variations in the SopCast
client population, whereas detailed characteristics of client behav-
ior at the session and partnership levels are provided in Sections 6
and 7, respectively. A summary of our main findings along with a
discussion of their implications for P2P live streaming systems
are presented in Section 8. Section 9 concludes the paper and offers
possible directions for future work.

2. Related work

A number of previous characterizations of live streaming media
workloads are available in the literature, several of which analyze
the workloads of popular P2P live applications, such as SopCast and
PPlive [14–17,20–22]. However, these previous characterizations

differ with respect to their goals, and thus to the perspective taken
for workload analysis purposes.

Complementary to our work, some studies focus mainly on net-
work traffic patterns, characterizing metrics such as upload and
download rates, packet types, and protocol usage [13,14,17], while
other efforts target the characterization of properties of the P2P
overlay network, such as peer degree and clustering coefficient
[16,21]. Silverston et al. [26] analyzed the level of fairness in the
collaboration among peers, in terms of the ratio between upload
and download traffic, as well as the geographic location of collabo-
rating peers. One interesting conclusion they reach is that P2P-TV
traffic typically crosses a large number of autonomous systems,
which has important implications for Internet service providers. A
few other studies analyze live transmissions from the perspective
of the quality of the video received by the clients, characterizing
metrics related to video continuity, visual quality and playback
time differences among the participants [20].

Some previous studies also characterize metrics related to client
behavior, such as geographical distribution, client lifetime in the
system, client arrival rate, channel popularity and number of part-
nerships [13–17]. For instance, in [13,14], the authors analyze the
transmissions of two live events (i.e., two soccer games of the 2006
World Cup) collected from 4 important applications, namely,
PPLive, PPStream, TVAnts and SopCast, using 2 crawlers. Their
main focus is on analyzing network traffic patterns. The only client
behavior aspect analyzed is lifetime. Whereas the exact definition
of lifetime is not very clear, it seems to encompass the time inter-
val between the first and last packet sent or received by the client,
thus possibly including multiple sessions (according to our defini-
tion) from the same client.2 Thus, this metric cannot be directly
compared to any of the metrics characterized here, as we analyze
client behavior at the finer granularities of sessions and partnerships
(within sessions).

In [17,22], the authors analyze the transmissions of 3 channels in
the PPLive application. In addition to traffic related metrics, they
also characterize some client behavior aspects such as peer geo-
graphical distribution, temporal variation of channel popularity, cli-
ent arrivals and departures, lifetime, and number of partners per
client. Like in [13,14], client lifetime is not directly translated into
any of the metrics analyzed here. Moreover, the authors compare
their results across 3 channels, exploring mainly channel popularity
as a factor that may impact client behavior. In a complementary ef-
fort, we here analyze the impact of the type of transmitted content
(event or non-event).

In [16], the authors analyze characteristics of the P2P overlay
network in PPLive transmissions, comparing them against charac-
teristics of existing file-sharing P2P overlays. The authors show
that the network structure of P2P live transmissions can be well
represented by a random graph, and that the average peer degree
is independent of channel popularity. They also characterize client
lifetimes, finding that, in comparison with file-sharing systems,
live streaming clients tend to have shorter lifetimes. They perform
the analyses separately for 3 different channels (e.g., a very popular
channel, a channel transmitting a large set of short programs, etc.),
although such channels are not characterized in terms of event and
non-event transmissions.

In sum, previous studies of P2P live streaming workloads ana-
lyze only a few aspects of client behavior. In particular, none of
them analyze the properties of client sessions, thus neglecting that
a client may join and leave the same transmission multiple times,
which may ultimately affect the system dynamics and perfor-
mance. Moreover, none of them compare client behavior across

2 We here use the term lifetime to refer to such period so as to make it clear that it is
different from our definition of session ON time. However, we should note that some
previous studies refer to such period as a session.
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transmissions that differ, fundamentally, in terms of the type of
content, e.g., an important live event transmission versus a regular
(non-event) live transmission.

Thus, to the best of our knowledge, this work is the first that
focuses primarily on client behavior, capturing several aspects that
jointly show a clearer and more detailed picture of how clients
interact with SopCast, and addressing potential qualitative and
quantitative differences that may exist between major event trans-
missions and regular non-event transmissions. Our characteriza-
tion results provide valuable insights to support the future
design of more realistic synthetic workload generators as well as
of new protocols that exploit client behavior patterns, taking the
type of transmitted content into account.

3. P2P Live streaming

In this section, we first briefly overview the main components
of a P2P live streaming system (Section 3.1). Next, we introduce
the client behavior model that drives our characterization of the
SopCast system (Section 3.2).

3.1. System components

P2P live streaming systems are composed of clients (peers or
nodes) that collaborate to disseminate the media content. The
clients are organized into a virtual overlay network, on top of the
real computer network. Each channel, while transmitting a live
stream, has its own P2P overlay network, independent from any
other channel maintained by the application. In other words, each
live channel is an autonomic P2P network. Thus, we use the terms
‘‘transmission’’, referring to an active channel transmitting live
content, and ‘‘P2P network’’ interchangeably throughout this
paper.

The P2P overlay network is commonly based on either a struc-
tured tree-like overlay or a non-structured mesh-based overlay. In
both architectures, there is a special client called server S, which
generates the live content, splitting the media into pieces called
chunks, which are transmitted over the P2P network for later exhi-
bition. In order to participate, clients receive the streaming media
and relay the content to its partners.

Most currently popular P2P live streaming applications, such as
SopCast, PPLive and GridMedia,3 use a non-structured mesh-based
overlay network, known as data-driven mesh-based overlay network
[27]. In this overlay architecture, a client explicitly requests a needed
media chunk from one of its partners. It tends to be resilient to fail-
ures and client dynamics, providing a smooth streaming media visu-
alization. This architecture, adopted by SopCast, drives our client
behavior model, introduced in the next section.

To join the system, a client ci first registers itself at a centralized
bootstrap server B, which normally is distinct and independent of
the overlay network. B then returns to ci a subset of the currently
active clients, which is a list of potential partners of ci, LPCi. Thus,
given C the set of active clients (according to B) in the system at
the time that ci contacts B, LPCi # C and LPCi – ;. After this start-
up mechanism, the joining client ci then selects n clients from LPCi

and tries to establish partnerships with each of them. Successfully
established partnerships determine LPi (LPi # LPCi), the set of part-
ners of ci.

While in the system, ci periodically exchanges keep-alive mes-
sages with its partners. When ci detects that a partner cj (cj 2 LPi)
is idle (i.e., ci stops receiving keep-alive messages from cj), ci re-
moves cj from LPCi and LPi, selects another client from LPCi, and
tries to establish a new partnership with it. It may also choose to

contact the bootstrap server to get a new list of potential partners.
Thus, sets LPCi and LPi are dynamically updated.

Active clients exchange media chunks only with their partners.
A client ci periodically checks which chunks are needed, identifies
which partners can have these chunks, and sends requests for
them. More precisely, each client ci maintains a chunk map cmi,
which specifies the chunks that ci currently has in its streaming
buffer (and thus can be forwarded to other clients) as well as the
chunks it still needs. If ci does not have a chunk h, it marks cmi[h]
= 0; otherwise, cmi[h] = 1. Clients often exchange their chunk maps
with their partners, thus learning each other’s needs and chunk
availabilities. During a channel transmission, a client sends re-
quests for data chunks to their partners or directly to the server
S as well as serve requests from their partners by forwarding pre-
viously received chunks to them [27].

3.2. Client behavior model

Our proposed client behavior model assumes that each client ci

can join and leave the P2P network (i.e., the live transmission) at
any time. In other words, we assume an ON/OFF model, in which
each client alternates between an active – ON – state, and an idle
– OFF - state. While in the ON state, client ci is in a session, exchang-
ing media chunks with its partners, trying to fetch and rebuild the
original streaming data for exhibition on a media player. When ci

leaves the ON state, it may go to an OFF state with probability Poff,
or it may quit the transmission, never returning, with probability
1 ! Poff. Either event marks the end of the current session of ci.

While in the OFF state, ci does not exchange any media chunk
with its partners, remaining completely inactive. After a while,
the client rejoins the P2P network, starting a new session, during
which it will exchange more chunks and interact with other cli-
ents. This dynamics of client behavior is captured by the simple
state machine shown in Fig. 1.4

Based on this ON/OFF model, we propose a hierarchical model
that captures the behavior of a client ci in terms of its interactions
with the system, that is, its behavior during a single live channel
transmission. Our model, illustrated in Fig. 2, captures client behav-
ior at two different levels. At the higher session level, the model
captures the multiple viewing sessions that ci may have of the
given channel transmission. For instance, in Fig. 2(a), ci joins the
live transmission, has two viewing sessions during that transmis-
sion, and then leaves for good. At the lower partnership level, the
model captures the interactions ci establishes with one or more
partners, during a given session. In other words, each client session
is composed of potentially multiple partnerships. In Fig. 2(b), ci

establishes three partnerships during its first session. Our hierar-
chical approach is similar, in nature, to the approaches adopted
by previous characterizations of other types of workloads [28,29].

Given this hierarchical model, client behavior for a given live
transmission can be characterized according to the following set
of parameters (or metrics). First, we need to define the rate at

Fig. 1. P2P live streaming: client ON/OFF model.

3 http://www.gridmedia.com.cn.

4 Note that, by definition, an OFF state occurs between two consecutive ON states.
Thus, the END state captures the final departure of the client from the P2P network.
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which new client sessions are initiated. Thus, we define the session
inter-arrival time as the time elapsed between the beginning of two
consecutive sessions, regardless of whether they are from the same
client or from different clients. We also need to define the number
of sessions that each client ci has during the same transmission.5

We define ON time as the period of time during which a client is
active in the transmission, that is, exchanging streaming data with
any of its partners. Thus, an ON time is equivalent to the duration
of a client session, and is defined as the period of time elapsed be-
tween the first and the last data packet exchanged between the
client and any of its partners during the corresponding session.
We also define OFF time as the time interval between the end of
a session and the beginning of the next session of the same client
(during the same transmission).

During each session, a client establishes one or more partner-
ships. Thus, at the partnership level, client behavior can be charac-
terized in terms of number of partnerships established within a
single session, and partnership duration. We focus on what we call
active partnerships, which refer to pairs of clients exchanging data
packets, as our goal is to analyze the behavior of clients viewing
the live content. We do not consider trading control packets as part
of an active partnership. Thus, the duration of a partnership be-
tween two clients is defined as the time elapsed between the first
and the last data chunk exchanged between them, within the cur-
rent session. Note that, during a single session, ci establishes at
most one partnership with another given client cj, although ci

may establish multiple partnerships, each one with a different
client. Moreover, the duration of a partnership is upper-bounded
by the duration of the session (i.e., ON time) during which it was
established.

4. SopCast data collection

Our client behavior characterization is based on traffic logs
collected from SopCast, one of the most popular P2P live streaming
applications.6 SopCast currently offers a great variety of channel
options. In Section 4.1, we present the channels that we monitored,
whereas our crawling methodology is described in Section 4.2.
Section 4.3 briefly overviews the collected data.

4.1. Analyzed channels

The three analyzed SopCast channels were selected because of
their different characteristics in terms of country of origin, target
audience, coding, image quality, and program content. The first
channel is CCTV, a state-owned Chinese news broadcaster. It is
very popular in China, and transmits higher quality video in com-
parison with the other two channels (around 600 kbps). The sec-
ond channel is a sports specialized channel in Chinese language.
Usual program examples include sport news, live game transmis-
sions and sport documentaries. It also transmits reasonably high
quality content (around 500 kbps). The last channel transmits the
content of the most popular TV station in Brazil. It was monitored
during two major sport events for the Brazilian audience, i.e., the
final games of an important soccer championship. During these
transmissions, the live content was broadcasted at medium to
low rates for SopCast standards (around 250 kbps).

As will be discussed in the following section, we have collected a
number of traffic traces during different transmissions of each chan-
nel. The monitored transmissions can be grouped into two catego-
ries, in terms of the type of content: (1) event transmissions refer
to the live broadcast of some major and decisive event of any nature
(e.g., sports, political, etc.), whereas (2) non-event transmissions
broadcast regular live content. The transmissions in the Brazilian
channel fall into the event category, whereas the transmissions in
the two Chinese channels correspond to non-event transmissions.

4.2. Crawling methodology

Modeling client behavior in P2P live streaming systems (and
SopCast in particular) is a challenging task [17]. The information
stored in the SopCast tracking servers is not available for public
use, thus making it difficult to produce a precise reconstruction
of the P2P network characteristics. In order to overcome this limi-
tation, we applied a methodology to collect data and to reconstruct
the P2P network that is similar to the one used in [16,20].

In particular, we set up a group of computers running the
SopCast application as well as network monitoring tools. These
data crawlers joined the SopCast network as ordinary clients, and
actively recorded interactions performed between them and other
peers. After a period of time, all the data collected by these com-
puters were merged into a single trace, which was used to recon-
struct the SopCast network dynamics during the crawling period.

More precisely, our methodology is composed of two main
phases, namely, (1) setup configuration, and (2) data crawling.
Setup configuration starts by letting all data crawlers update their
versions of the local softwares, including Wireshark7 (tcpdump),
which is used to capture all network traffic observed during the sec-
ond phase. Next, following [30], the crawlers synchronize their local
times according to a given server, using Network Time Protocol8 –
NTP [31]. We used the standard configuration of the PlanetLab nodes
for NTP servers.9

During the second phase, all data crawlers first join the same
(target) SopCast channel. Joining times are normally distributed
over a given initial period T. In our analyses, we only consider data
collected after all crawlers are logged in SopCast, disregarding any
data received during the initial period T. Thus, any congestion and
overloading that might occur during this initial joining period,
which might affect client behavior, is not included in the analyzed

(A)

(B)

Fig. 2. P2P live streaming: hierarchical client behavior model.

5 Note that this number is related to probability Poff.
6 We selected SopCast because: (1) according to Google Trends (http://www.goo-

gle.com/trends), it receives a larger number of searches than other popular
applications such as PPLive and PPStream; and (2) a Linux implementation of
SopCast is available, which enables our experiments on PlanetLab.

7 http://www.wireshark.org.
8 This makes the local time differences among data crawlers quite small (less than

1 s). Given that our client behavior characterization considers a time granularity of 1
s, such differences can be considered negligible, for practical terms.

9 If this configuration was not available, we used public NTP servers such as
ntp.ubuntu.com.
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data. As soon as it joins the channel, each data crawler uses Wire-
shark to capture all network packets with origin and destination
port numbers equal to those configured for the SopCast application
(i.e., in-bound port number equal to 8901, out-bound port number
equal to 8902). In preliminary experiments, we also monitored
other ports to check whether SopCast uses additional ports. Since
we found that no other port was used, we opted to restrict our
crawling procedure to the configured port numbers.

The data captured by each crawler consists of the timestamp
(at 1-s granularity) of each packet sent (received) to (from) other
SopCast clients and packet size information. After crawling finishes,
the data captured by all crawlers are sent to an application devel-
oped by us. Based on the collected packet size and timing informa-
tion, this application reconstructs the behavior of the SopCast
clients that had some contact with the crawlers during the crawling
phase. That is, the SopCast P2P network dynamics is reconstructed
as a sequence of network snapshots, taken at 1 s intervals.

We used 421 PlanetLab computers as SopCast crawlers. We se-
lected computers located in various parts of the world in order to
achieve a large coverage of the SopCast network. We did not im-
pose any restriction on each computer’s upload and download
capacity. We note that all 421 crawlers remained active in the sys-
tem (no churn) throughout data collection. Although such a large
number of stable nodes might introduce some bias in our measure-
ments, we conjecture that such bias, if present, might not be very
significant because, as we shall see, the same general client behav-
ior patterns were observed across all transmissions of the same
type (e.g., all non-event transmissions), despite the large variability
in the number of simultaneous clients connected to such transmis-
sions. In particular, for some of those transmissions, the crawlers
represented a small fraction of all peers. Thus, we conjecture that
our crawlers worked mostly as network observers, and did not
greatly impact how real clients behave.

We also note that, in comparison with previous P2P live stream-
ing characterizations [13,14,16,17,20,32], we use a larger set of
crawlers (previous efforts used at most 70 crawlers [20]). To assess
the benefit of using such a larger number of crawlers, we analyzed
the impact of the number of crawlers on the number of simultaneous
clients discovered by them on each snapshot of the network (i.e.,
during each 1 s interval). That is, we analyzed the number of
simultaneous clients discovered by a subset of k crawlers, randomly
selected among our 421 crawlers, for various values of k. For each
such value, we repeated the random selection 200 times, and
considered each 1 s snapshot of the P2P network in all analyzed
transmissions.

Table 1 shows average results for the ratio between the number
of simultaneous clients discovered by k crawlers and the number
of simultaneous clients discovered by all 421 crawlers. It also
shows, in parenthesis, the standard deviations of the averages, also
known as Standard Error of the (sample) Mean (SEM) [33], as
measures of the variability of the results.10 SEM values, shown as

fractions of the corresponding averages, are typically small, implying
a small variability across different snapshots and transmissions.

As shown in the table, using at most 70 clients (as opposed to
421) leads to a loss of at least 11%, on average, in the number of
simultaneous clients. However, there are clear diminishing returns:
the benefit of having more than 200 crawlers is only marginal. As we
had no way of knowing these results beforehand,11 we used the
largest number of stable PlanetLab nodes that we could gather during
our experiments, that is, 421 nodes. Although this number seems lar-
ger than it is necessary, it does bring benefits over using only at most
70 crawlers, as the client population is larger and possibly more rep-
resentative of the complete network. Moreover, the observed dimin-
ishing returns effect provides evidence (though no guarantee) that we
might have collected the vast majority of all clients.

4.3. Overview of our data collection

We collected SopCast data from December 2008 to January
2009. We performed two crawlings of the Chinese channels. First,
we monitored both channels for a whole week in order to analyze
temporal variations in channel popularity (i.e., number of simulta-
neous clients). The data collected during this first crawling is ana-
lyzed in Section 5.

We then selected one hour of observed peak popularity – 8PM
local time – and monitored each Chinese channel for 100 min, dur-
ing several days. We chose 100-min long transmissions as this was
the (approximate) duration of the two analyzed event transmis-
sions. In total, this second crawling produced 35 different data sets.
These 35 non-event transmissions, together with 2 event transmis-
sions monitored from the Brazilian channel, are used to analyze
session and partnership characteristics in Sections 6 and 7.

Each analyzed transmission has between 4385 and 12,233 cli-
ent sessions. Event transmissions served up to 3000 simultaneous
clients, whereas non-event transmissions had from 700 to up to
6000 simultaneous clients. These numbers represent instanta-
neous measures computed over each network snapshot (i.e., 1 s
time interval). Moreover, for each transmission, each crawler col-
lected data related to over 2,000,000 interactions and more than
3000 unique partners, where each interaction corresponds to one
(data or control) packet sent or received by the crawler. In each
snapshot of the network, each crawler had around 90 simultaneous
partners. These numbers are larger than those reported in previous
analyses. In [16], for instance, the authors report that the analyzed
PPLive channels had at most 2500 simultaneous clients, and crawl-
ers had about 35 simultaneous partners.

5. Temporal variations in channel popularity

We start our characterization of SopCast client behavior by ana-
lyzing hourly and daily variations in channel popularity, that is, in
the number of simultaneous clients connected to a given channel.
We here focus on the two Chinese channels (non-event transmis-
sions), as the monitored event transmissions last for only 100 min.

Fig. 3 shows representative results for the CCTV channel during
one specific weekday, namely, December 16th, 2008 (Fig. 3(a)), and
one specific week (Fig. 3(b)). The hourly variation pattern is typical
of what has been observed in several weekdays for the two moni-
tored channels. The number of simultaneous clients starts growing
at 7 AM local time, remaining roughly stable until around 4 PM.
Channel popularity starts increasing once again, reaching a peak
around 8PM and staying roughly stable for about 3 h. Thus, the

Table 1
Ratio between the numbers of simultaneous clients discovered in each network
snapshot using k crawlers and using all 421 crawlers (averages and SEM values, as
fractions of corresponding averages, in parenthesis).

k = 2 k = 10 k = 50 k = 70 k = 100 k = 200

13.5%
(0.11%)

42.1%
(0.07%)

85.5%
(0.05%)

88.9%
(0.04%)

93%
(0.08%)

98%
(0.1%)

10 The Standard Error of the (sample) Mean, SEM, of a sample of n observations is
computed as the ratio between the standard deviation of the sample s and the square
root of the number of samples n, i.e., sffiffi

n
p . Note that a (1 ! a)% confidence interval for

the sample average can be determined by multiplying the corresponding SEM value
by the (1 ! a/2)-quantile of the z or t variate, depending on the number n of
observations [33].

11 Note that previous analyses similar, in nature, to ours [32] considered only the
total client population discovered during the whole transmission as opposed to the
client population simultaneously connected to the system (as we do here).
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period with the largest number of simultaneous clients seem to
coincide with the time when people arrive at home, after work
or school.

As shown in Fig. 3(b), non-event SopCast channels present daily
variations in the number of simultaneous clients, with significant
peaks around the weekend, similarly to what was observed in
[21]. On Saturday and Sunday, the channel receives, on average,
as many as 3 times more simultaneous clients than on Monday
through Thursday. The much higher popularity on weekends may
be explained by a larger number of users who spend their spare
time searching for some entertainment on the live channels.

In the next sections, we analyze sessions and partnerships of
clients of non-event transmissions during periods of peak channel
popularity. We also considered periods of rough stability, in terms
of number of simultaneous clients, to avoid impacting the analyzed
distributions with diurnal patterns [28]. Thus, based on the results
shown in Fig. 3(a), we chose to monitor the non-event channels
starting at 8PM, for 100 min, across several days.

6. Session level characterization

In this section we characterize each session level component of
the hierarchical client behavior model presented in Section 3.2. We
start by first discussing how we identify client sessions (Section
6.1). Next, we analyze session inter-arrival times (Section 6.2),
number of sessions per client (Section 6.3) as well as ON and OFF
times (Sections 6.4 and 6.5). Since the PlanetLab crawlers remained
active in the system throughout the collection period, their behav-
ior, in terms of session dynamics, does not necessarily reflect the
behavior of real SopCast clients. Thus, we disregard them from
our analyses of client session characteristics, focusing, instead, on
real SopCast clients that have interacted with any of our crawlers
during data collection.

We note that, for each model component analyzed in this
section as well as in Section 7, we quantify how close the distribu-
tions of measured data found for different transmissions are to
each other. We do so by computing the average and corresponding
SEM value for each distribution percentile.12 As we will see, SEM
values tend to be small if computed for transmissions of the same
type (event or non-event), meaning that the same distribution fits
reasonably well the data measured across all transmissions of a

given type.
Moreover, we characterize such distributions by presenting

statistical models that best fit the measured data. The best fitted
distribution is defined by comparing the least square errors (LSE)
[33] of the best fitted curves for a number of commonly used dis-
tribution models. The following distribution models are considered
as candidates for best fit: Exponential, LogNormal, Weibull, Pareto,
Gamma and Normal.13 We also visually compare the curve fittings
both at the body (small values in the x-axis) and at the tail (large
values in the x-axis) of the measured data to support our fitting
decisions.

6.1. Identifying client sessions

SopCast does not explicitly delimit client sessions. If a client
stops interacting with its partners, one cannot precisely determine
if it has left the system or if it is experiencing temporary network
problems. In particular, although the protocol does have control
packets to indicate the beginning of a partnership (as discussed
in [34]), there is no control packet marking the end of it. Moreover,
we observed, in some preliminary experiments, that a client may
continue receiving control packets from its partners for more than
15 min after leaving the SopCast network. Thus, we are not able to
precisely delimit a session by simply inspecting control packets in
our logs.

Therefore, we follow an alternative approach that was adopted
by several previous studies to delimit client sessions in various
types of applications [28,29,35]. That is, we assume that a session
ends when the client remains inactive for a period of time exceed-
ing a certain threshold. Periods of inactivity below the given thresh-
old account for delays caused by temporary connection break
downs or network traffic congestion, which may happen in real net-
works, and should not necessarily cause session interruption.14

To determine the session threshold, we observe the distribution
of time intervals between two consecutive data packets exchanged
between a given client and any of its PlanetLab partners. More pre-
cisely, we define the inter-activity time as the period of time elapsed
since a given client sends/receives a data packet to/from any of its
PlanetLab partners until it sends/receives another data packet (also
to/from any of its PlanetLab partners). That is, it is the time period
between two consecutive activities (data reception or transmission)
of the client, as perceived by the PlanetLab crawlers. We then search

Fig. 3. Temporal variations in client population in the CCTV (non-event) channel.

12 That is, let us assume we have n data sets, collected during n different
transmissions. We first take the sample distribution for each individual transmission.
Next, for each distribution percentile i (i = 1 " " " 100), we compute the average xi and
the standard deviation si across all n distributions. Finally, we compute the standard
deviation of the mean siffiffi

n
p . This corresponds to the SEM value for percentile i. We do so

for various percentiles [33].

13 Functions (PDF) of these distributions are: Weibull: pXðxÞ ¼ abxb!0e!axb Ið0;1ÞðxÞ,

LogNormal: pXðxÞ ¼ 1
xr
ffiffiffiffiffi
2p
p e

!ðlnðxÞ!lÞ2

2r2 , Exponential: pX(x) = ke!kx, Pareto: pX ðxÞ ¼ aka

xaþ1 ,

where x P k, Gamma: CðaÞ ¼
R1

0 sa!1e!sds, and Normal: PðxÞ ¼ 1
r
ffiffiffiffiffi
2p
p e!ðx!lÞ2 2r2

14 Note that, by definition, OFF times cannot be shorter than this threshold.
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for a significant change (e.g., a knee) in the shape of the distribution
of inter-activity times, which might reflect a change in the underly-
ing process, possibly delimiting different regimes and indicating the
aggregation of multiple distributions (e.g., short times could indi-
cate regular idle times due to network-related delays, whereas long-
er times reflect client inactive behavior).

In order to plot the distribution of inter-activity times, we first
need to identify data packets. To do so, we rely on previous studies
of SopCast and PPlive [13,14,17] which showed that packet size is a
good heuristic to determine if a network packet corresponds to a
data or control packet. According to them, streaming data packets
tend to be larger, around 1100 bytes, whereas smaller packets com-
monly represent control packets. Indeed, we did observe, in some
preliminary experiments, that SopCast control packets have around
70 bytes. Thus, for analysis purposes, we consider as a data packet
any network packet carrying more than 1000 bytes.

Having identified the data packets, we now turn to the analysis
of the distribution of inter-activity times. We observed that all 37
event and non-event transmissions present very similar distribu-
tions. Indeed, the SEM values, computed for each percentile across
all 37 individual distributions, are below 0.6% of the average
values. Thus, for the sake of presentation, we aggregate all 37
distributions into a single ‘‘average’’ distribution, obtained, by tak-
ing, for each percentile, the average across all distributions.

We start by noting that the vast majority (89%) of the measured
inter-activity times are very short, i.e., under 5 s. Such short time
intervals are most likely due to network-related delays. Thus, a plot
of the complete distribution of inter-activity times would be domi-
nated by these very short time intervals, making it hard to determine
the session threshold, since the relevant portion of the curve is
obfuscated. Thus, in order to be able to analyze the distribution of in-
ter-activity times in search for a meaningful threshold, we focus on
the relevant part of the curve, removing all measured data points
that are under 5 s. The cumulative distribution computed over the
remaining data points is shown in Fig. 4. Small bars along the curve
indicate the SEM values measured at different percentiles.

Note that the cumulative probability grows fast until 120 s.
After that, the growth slows down, and the curve presents a knee
around 150 seconds. Based on this observation, we choose 150 s
as the session threshold value. We also experimented with other
values between 120 and 180 s, finding no significant difference
in the characterization results.

6.2. Session inter-arrival times

Fig. 5 shows the complementary cumulative distributions of
session inter-arrival times for event and non-event transmissions.
We found that the individual distributions computed for each of
the 35 non-event transmissions are very similar to each other

(i.e., very small SEM values). Similarly, the distributions for both
event transmissions are also very close to each other, though very
different from the distribution for non-event transmissions. Thus,
for the sake of presentation, Fig. 5 shows a single ‘‘aggregated’’ dis-
tribution for each transmission type. Each distribution was ob-
tained by computing the average percentiles across the
distributions for all transmissions of the same type. The figure also
shows SEM values for various distribution percentiles. The SEM val-
ues are under 0.5% of the corresponding averages, for all percentiles
of both aggregated distributions.

Session inter-arrival times tend to be much shorter during event
transmissions. The monitored events attracted a large number of
clients, most of them arriving at the beginning of the transmission.
We note that the fraction of session inter-arrival times greater than
10 s is only 0.3%. In contrast, for non-event transmissions, this frac-
tion grows to 3%, which is not negligible. Nevertheless, for both
types of transmissions, the majority of session inter-arrival times
are quite short, under 2 s, indicating high session arrival rates.
Indeed, event and non-event transmissions receive, on average,
0.705 and 0.495 sessions per second, respectively.

In order to determine the statistical models that more closely fit
the distributions of session inter-arrival times, we compared the LSE
values of the best fitted curves for the several considered alterna-
tives. We also visually compared the curve fittings at the body and
at the tail of the measured data. We found that LogNormal distribu-
tions, with different parameters, are the best fits for both event and
non-event transmissions. Fig. 5 shows the two fitted LogNormal dis-
tributions, whereas Table 2 summarizes our findings providing the
mean, standard deviation, best-fitted distribution model and distri-
bution parameters for each type of transmission.

Note that, for both event and non-event transmissions, the
LogNormal distributions overestimate the probabilities of very short
inter-arrival times. Yet, among all tested models, they are the ones
that more closely approximate the data, even if we consider only this
portion of the curves. Though not ideal, overestimating those
probabilities is preferable to underestimating them, since short
inter-arrival times (e.g., burst arrivals) have a stronger impact on
server capacity planning and content sharing. Thus, overestimating
their probabilities lead to more conservative system design
decisions, which may be preferable to more aggressive, and possibly
riskier, choices.

6.3. Number of sessions per client

We now characterize the number of sessions that each client
has during one transmission. A larger number of sessions imply
that the client leaves and (re) joins the channel multiple times
during the same transmission.
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We found very similar distributions of the number of sessions
per client in all 37 (event and non-event) transmissions. Indeed,
the SEM values computed over all 37 distributions are under
0.6% of the corresponding averages. Thus, Fig. 6 shows a single
complementary cumulative distribution, computed by averaging
percentiles across all 37 transmissions. The figure shows that most
clients have only a few sessions during one transmission. Indeed,
around 54% of the clients leave the system after a single session,
whereas 80% of them have at most 2 sessions per transmission.

Recall that, considering the ON/OFF model on which our hierar-
chical client behavior model is built, the number of sessions per
client can be computed based on the transition probability to state
OFF, Poff. In other words, it follows a Geometric distribution15 with
parameter 1 ! Poff. Fig. 6 shows the Geometric distribution that best
fitted our measured data, for which Poff = 0.398. Note the good agree-
ment between both curves.

6.4. Session ON times

We now analyze session ON times, expressing them as percent-
ages of the total transmission duration. We chose to characterize
normalized ON times, as opposed to absolute measures, as the fitted
distributions can be more directly applied into generating synthetic
workloads, with no need of data transformations to deal with
boundary conditions (e.g., synthetically generated ON times that
exceed the transmission duration). We note that, for the specific
transmissions analyzed in this paper, normalized ON times corre-
spond (approximately) to absolute measures taken in minutes, as
each monitored transmission lasts for (approximately) 100 min.

Once again, we found that the distributions of session ON times
follow similar patterns for most transmissions of the same type,
particularly for non-event transmissions. As a matter of fact, the
SEM values computed over the 35 individual distributions obtained
for the non-event transmissions do not exceed 0.72% of the re-
ported average values. For the two event transmissions, SEM values
are somewhat larger, possibly due to the smaller sample size.
Nevertheless, they are still reasonably small, falling under 5.7% of
the averages.

However, we did find very distinct distributions for event and
non-event transmissions, as shown in Fig. 7. The (aggregated) dis-
tribution of ON times for event transmissions (Fig. 7b) is much
more skewed towards larger numbers, meaning that session ON
times tend to be much longer in such transmissions. While for reg-
ular non-event transmissions (Fig. 7(a)), 10% of the client sessions
last for at least 20% of the transmission, this fraction grows to 33%
for event transmissions. Indeed, a considerable number of clients
(around 15%) stay online throughout most of the transmission
(ON times greater than 90%), which may be expected for transmis-
sions of the final games of a major soccer championship.

As shown in Fig. 7(a), for non-event transmissions, Gamma and
LogNormal distributions provide the best fits for the measured ON
times. Whereas the LogNormal distribution is a better fit for smal-
ler values, which account for a large fraction of all measured data,
Gamma more closely approximates the tail of the curve. In con-
trast, Fig. 7(b) shows that ON times in event transmissions are bet-
ter approximated by a Weibull distribution. These results are
summarized in Table 3.

6.5. Session OFF times

In this section, we characterize the final component of our ses-
sion level client behavior model, namely, OFF times. Like with ON
times, we analyze normalized OFF times, expressed as fractions of
the transmission duration.

We found that, unlike ON times, OFF times follow very similar
distributions across all 37 transmissions, regardless of type (event
or non-event). Indeed, the SEM values computed over all 37 distri-
butions are below 2.5% of the averages. Moreover, as shown in
Fig. 8, OFF times are typically small: around 80% of the measured
samples are shorter than 30 min, while 40% of them are shorter
than 10 min. Thus, although many clients have only one session
during a transmission, a considerable fraction of the clients that
have multiple sessions (and thus experience OFF times) tend to
return to the transmissions within somewhat short time intervals.
This finding may be exploited in the design of partnership policies
that take into account the probability that an inactive client
returns to the system shortly.

We also found that OFF times are well fitted by an Exponential
distribution, both at the body and at the tail of the curve. Indeed,
Fig. 8 shows a very good agreement between measured data and
fitted distribution. A summary of our characterization of OFF times
is presented in Table 4.

7. Partnership level characterization

We now turn to our characterization of the partnership level
components of our proposed client behavior model. In particular,
we characterize the number of partnerships established by each
client within a single session (Section 7.1) and the durations of
such partnerships (Section 7.2).

Recall that we here focus on active partnerships, which corre-
spond to periods of time during which two clients exchange
chunks of streaming data. Moreover, we here analyze the partner-
ships established between each PlanetLab crawler and other clients
(including real clients and other crawlers). In other words, we do
not analyze partnerships established between pairs of real SopCast
clients (i.e., non-crawlers), as we are not able to precisely monitor
all partnerships established by them.16

Table 2
Distributions of session inter-arrival times: summary.

Transmission
type

Best fit Mean
(s)

Std.
Dev. (s)

First
parameter

Second
parameter

Non-event LogNormal 2.012 4.371 m = !0.166 r = 1.318
Event LogNormal 1.417 1.113 m = 0.108 r = 0.693
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Fig. 6. Numberofsessionsperclientduringasingle(event/non-event)transmission.

15 The probability mass function of a Geometric Distribution with parameter p is
given by Prob(x = k) = (1 ! p)k!1p.

16 As previously mentioned, we noticed, in preliminary experiments, that a client
may remain in the list of partners of another client for more than 15 min after it has
left the system. Thus, monitoring a client’s list of partners is prone to over-
estimations.
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7.1. Number of partnerships

Note that, by definition, a given client may have at most one
partnership with any other participant of the system, since this
partnership is analyzed within the context of a single session. Thus,
we analyze the number of unique partners each PlanetLab crawler
has during each collected network snapshot.

We found very similar distributions of the number of partner-
ships per client across all 37 transmissions, regardless of type. In-
deed, SEM values computed over all 37 individual distributions are
under 1.67% of the averages. This might be explained, at least par-
tially, by internal mechanisms of the application, which seem to
give incentives for clients to keep a number of partners within
certain bounds or to periodically choose new partners.

Fig. 9 shows the (aggregated) distribution as well as SEM values
for various percentiles. On average, a client keeps around 101
simultaneous partners (i.e., during any single snapshot). This result
is in close agreement with results from a previous characterization
of 4 different applications, including SopCast [13]. Moreover,
around half of the clients have at least 90 partners in any snapshot

of the system, which might indicate a greedy neighborhood policy
implemented by SopCast.

As shown in Fig. 9, both Gamma and Normal distributions pro-
vide good fits for the distribution of number of partnerships.
Although the Gamma distribution fits somewhat better the mea-
sured data (i.e., with a smaller least square error), the Normal dis-
tribution, which is simpler to compute, does capture quite
reasonably the measured data, and thus may also be used to gen-
erate realistic synthetic workloads with no significant difference.
These findings are summarized in Table 5.

As a final note, we also analyze the similarity between the lists
of partners of different clients at any given time. In other words, we
analyze the clients that appear at the same time (at the 1-s granu-
larity) in the lists of partners of groups of PlanetLab crawlers, com-
puting the overlap between them. We do so by computing, for a
given snapshot, the ratio between the number of partners shared
by all crawlers in the group and the total number of unique part-
ners in the union of their lists. We repeat this procedure for various
snapshots of several transmissions, computing the ratio for various
group sizes, selected according to one of the following criteria: (1)

Fig. 7. Normalized ON times.

Table 3
Distributions of normalized ON times: summary.

Transmission
type

Best fit Mean
(%)

Std. Dev.
(%)

First
parameter

Second
parameter

Non-event LogNormal 6.60 17.96 m = 0.823 r = 1.459
Gamma a = 0.062 b = 107.3

Event Weibull 23.59 34.99 a = 2.032 b = 0.233
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Table 4
Distribution of normalized OFF times: summary.

Transmission type Best fit Mean (%) Std. Dev. (%) Parameter

Event/non-event Exponential 18.49 16.17 k = 0.054
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groups of randomly selected crawlers, and (2) groups of crawlers
that are partners of each other.17 In both cases, we randomly se-
lected 1000 groups of crawlers that meet the given criterion. By
comparing the overlap in the lists of partners in these two scenarios,
we are able to assess whether groups of clients that are partners tend
to share more or less partners than randomly selected clients.

Table 6 shows average results, along with corresponding SEM
values in parenthesis, for group sizes varying from 2 to 5. The small
SEM values, reported as fractions of the corresponding averages,
indicate the small variability of the results across different snap-
shots and transmissions. Let’s consider the randomly selected
groups first. As expected, as the group size increases, the overlap
in their lists of partners decreases. Whereas for pairs of randomly
selected crawlers, the overlap is 6.576%, on average, it drops to
0.1%, on average, for groups of five crawlers. In contrast, the overlap
among crawlers that are themselves partners of each other is clearly
larger, particularly for larger groups. For instance, pairs of crawlers
that are partners share 6.881% of their partners, on average, whereas
groups of 5 crawlers, all of them partners of each other, have, on
average, 1.65% of their partners in common. These results imply that
groups of clients that are partners of each other do tend to have more
partners in common than randomly selected clients. Nevertheless,
we note that, even for groups of partners, the overlap is not very
large (at most 6.881%, on average). Such small overlap might impact
the effectiveness of decentralized algorithms (e.g., decentralized
reputation mechanisms), as we briefly discuss in Section 8.

7.2. Partnership duration

Similarly to session ON and OFF times, we analyze normal-
ized partnership durations, representing the duration of each
partnership as a fraction of the remaining ON time of the client ses-
sion during which it was established. We note that, by taking the
remaining ON time, we capture both the absolute duration of the
partnership and the moment when it was established, considering
that the session ON time is known. This will be the case if our char-
acterization results are used to generate synthetic workloads: the
session level components (ON time, in particular) are generated
first, followed by the partnership level components. We also note
that we take as references the ON times measured for the real
SopCast clients, characterized in the previous section, as opposed

to the ON times of our PlanetLab crawlers which, based on our
experimental setup, are equal to the total transmission duration.
Thus, in this section, we analyze only partnerships established
between a crawler and a real client, disregarding partnerships be-
tween two crawlers.

Once again, we found that the distributions of partnership dura-
tions are very similar across all transmissions of the same type. In-
deed, SEM values computed over the distributions for individual
non-event and event transmissions are at most 2.6% and 4.8% of
the reported averages, respectively. Although somewhat larger
than the SEM values computed for other model components, these
values are still reasonably small, implying a small variability in the
distributions across different transmissions of the same type.

However, we did observe clearly distinct behaviors depending
on the transmission type. As shown in Fig. 10, partnerships during
event transmissions tend to be much more dynamic, lasting for
much shorter periods of time. In particular, we observed that
80% of all partnerships established during event transmissions
have durations below 12% of the session remaining ON time. In
contrast, during non-event transmissions, only 64% of the partner-
ships have normalized durations under the same mark.

We can interpret such differences in light of our results for
number of partners per client and session ON times. Recall that
the distributions of number of partnerships per client, measured
at each snapshot, are approximately the same for all event and
non-event transmissions. Thus, the normalized duration of each
partnership is directly influenced by the duration of the session
during which it was established. Since ON times tend to be much
longer for event transmissions (see Section 6.4), (normalized) part-
nership durations tend to be much shorter for that transmission
type.

We found that different Gamma distributions are the best fits
for partnership durations for event and non-event transmissions,
as shown in Fig. 11. To make visual inspection clearer, we plot
the curves for non-event transmissions as complementary cumula-
tive distributions (Fig. 11(a)). Table 7 summarizes our findings
regarding partnership durations.

Notice that channel popularity might also impact partnership
duration. One could expect that in less popular channels clients
would have fewer partnership options, and thus would tend to
keep their established partnerships for longer periods. However,
we note that channel popularity varied quite significantly across
different non-event transmissions. Nevertheless, in spite of such
differences, the distributions of partnership duration in all non-
event transmissions are reasonably similar. These observations
provide evidence that channel popularity, although possibly
having some influence, might not be a primary factor impacting
partnership durations, and client behavior in general. This issue
is further discussed in Section 8.

Table 5
Distribution of number of partnerships per client: summary.

Transmission
type

Best fit Mean (#
partners)

Std. Dev.
(#
partners)

First
parameter

Second
parameter

Event/non-
event

Gamma 101.453 41.537 a = 6.008 b = 16.886

Normal l = 101.453 r = 41.537

Table 6
Overlap in the list of partners of groups of crawlers (averages and SEM values, as
fractions of corresponding averages, in parenthesis).

Type of group Number of crawlers in the group

2 3 4 5

Randomly
selected

6.576%
(0.098%)

1.27%
(0.001%)

0.328%
(0.22%)

0.133%
(0.313%)

Partners 6.881%
(0.105%)

3.134%
(0.118%)

1.743%
(0.11%)

1.165%
(0.112%)
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Fig. 10. Normalized partnership durations.

17 There are partnerships between all pairs of crawlers in the group.
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8. Summary of our findings and their implications

A summary of our characterization results is provided in Table 8.
Based on these findings we make the following key observations.

First, we found close agreement across all monitored transmis-
sions of the same type of content (event or non-event) for all com-
ponents of our client behavior model, implying that the same
distribution provides a reasonably good fit for all such transmis-
sions (and, for non-event transmissions, even for multiple chan-
nels). Thus, client behavior follows very similar patterns across
different transmissions, provided they are of the same type.

Second, the type of transmitted content (event or non-event)
does impact client behavior in terms of session inter-arrival times,
ON times and partnership durations. During event transmissions,
clients tend to exhibit a more stable behavior, arriving within
shorter intervals, mostly at the beginning of the transmission,
and remaining active in the system for longer periods of time.
We argue that such differences are a direct consequence of the
different nature of the two types of content. Recall that event
transmissions broadcast major timely events (e.g., final champion-
ship matches, decisive political debates). Thus, in comparison with
regular non-event transmissions, they transmit content that tends
to have more ‘‘value’’ to the interested user, or, in other words, that
most likely will be ‘‘missed’’ by users who have some interest in it.
Thus, they tend to keep the user’s attention for longer periods.
Notice that this may not be directly related to the instantaneous
popularity of the transmission, in terms of the number of simulta-
neous clients: a transmission that attracts the interest of a large
number of clients may not necessarily keep it for very long (see
further discussion below).

These two findings could be exploited in the design of protocols
that take the expected client behavior, particularly in terms of
dynamic patterns, into account to build the overlay network. For
instance, there have been a few proposals of hybrid P2P overlay
architectures, which combine tree-based and mesh-based struc-
tures [36–38]. One could think of a hybrid strategy that adjusts
the structure based on the expected level of client stability in the
system, given the type of content that will be transmitted.

Our third observation is that, in spite of the differences between
event and non-event transmissions, SopCast clients, in general,
tend to be very impatient. Most clients have very short ON times.
Indeed, around 56% and 79% of clients in event and non-event
transmissions, respectively, have ON times under 5 min, whereas
78% and 55% of them have sessions that last for at most 1 min. This
is illustrated in Fig. 12, which shows, for each client session during
a non-event transmission, the time instants (y-axis) when the ses-
sion started (continuous line) and when it finished (dot). Thus, one
can determine the duration of a session by drawing a vertical line
connecting the solid line to a dot. Clearly, most dots appear very
close to the line, implying in very short ON times.

Such short ON times reflect a high degree of churn, which may
have serious consequences to P2P live streaming effectiveness. As
discussed in Section 3, when a client joins the system, it first sub-
scribes to the bootstrap server, which keeps information about the
new client (e.g., its network address) to distribute to other clients
searching for potential partners. However, the client does not
unsubscribe before leaving. Thus, the bootstrap server may keep
this information for a while after the client is gone. In our experi-
ments, we did observe a very slow reaction from the SopCast boot-
strap server to the departure of a client. Thus, if clients join and
leave the system very often, the bootstrap server may end up
advertising invalid client addresses as potential partners of joining
clients, which will experience longer delays and waste resources
until they start receiving the media streaming.

Fig. 11. Normalized partnership duration: best-fitted distributions.

Table 7
Distributions of normalized partnership durations: summary.

Transmission
type

Best fit Mean
(%)

Stddev
(%)

First
parameter

Second
parameter

Non-event Gamma 15.368 24.557 a = 0.123 b = 0.123
Event Gamma 8.272 19.950 a = 0.118 b = 0.700

Table 8
Hierarchical characterization of SopCast client behavior:
summary.

Hierarchy
level

Model
component

Transmission type

Non-event Event

Session
level

Session
inter-arrival
times

LogNormal
distribution

LogNormal
distribution

Number of
sessions per
client

62 for 80% of clients

ON times Gamma/
LogNormal
distribution

Weibull
distribution

OFF times Same exponential
distribution

Partnership
level

Number of
partnerships

Same Gamma/normal
distribution

Partnership
durations

Gamma
distribution

Gamma
distribution
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We also observe that most clients are, in general, very aggres-
sive and inconstant when it comes to establishing partnerships:
they drop old partners and add new ones very often. This is
evidenced by a large number of short partnerships in most ana-
lyzed client sessions during event and non-event transmissions.
This result motivates an investigation of the impact of currently
used partner selection algorithms on system performance, and
possibly the design of strategies that favor more stable and longer
partnerships, which might yield better performance. Another rele-
vant finding is the typically small overlap in the list of partners of
multiple clients (even clients that are partners), which might
impact the effectiveness of decentralized reputation systems
(e.g. [8,39]), in which a client estimates the reputation of a future
partner based on information received from other clients about
their previous interactions with it.

As a final note, we point out that the similar client behavior across
transmissions of the same type happens in spite of great differences
in channel popularity. To illustrate this point, Fig. 13 shows the num-
ber of simultaneous clients connected to each monitored channel as
a function of time, during one transmission of each channel. Time is
presented as a fraction of the total transmission duration. Clearly,
the two channels broadcasting non-event transmissions (i.e., CCTV
and Sport News Channel) experience very different popularities
throughout the transmission. Whereas the number of clients con-
nected to CCTV remains roughly stable (around 700), the popularity
of Sport News tends to increase as the transmission progresses,
experiencing peaks of over 6000 simultaneous clients. In compari-
son, the transmission of a major football match (event) experiences
an intermediate popularity, which increases slowly, exceeding 3000
simultaneous clients by the end of the transmission.

We should note that the two non-event transmissions shown in
Fig. 13 seem to be two extreme cases for which there might be some
differences between the distributions found for each model compo-
nent. As a matter of fact, as discussed in the previous section, it is
intuitive that the number of participants in the system may impact
some aspects of client behavior, such as number of partners and
partnership duration. However, considering all 35 non-event trans-
missions, the small SEM values computed over the individual distri-
butions, for all model components, indicate that, in general, such
differences tend to be small. Thus, although popularity might im-
pact, to some extent, client behavior, we argue that content type,
in terms of event or non-event, is a more determinant factor.

9. Conclusions and future work

This paper presents a characterization of client behavior in
SopCast, focusing particularly on dynamic behavior aspects. Our
characterization was driven by a hierarchical model that captures
client behavior at both session and partnership levels. It was per-
formed separately for various transmissions of major live events as
well as regular (non-event) content, which differ particularly in
terms of the ‘‘value’’ of the content to the user. For each component
of our model, we provided best fitted statistical distributions, which
can be used to drive the generation of realistic synthetic workloads.
In general, we found that client behavior patterns are quite consis-
tent across all monitored transmissions of the same type of content,
whereas session inter-arrival times, session ON times and partner-
ship durations exhibit very distinct patterns for event and non-event
transmissions. Thus, the inherently different nature of the two types
of content does have a significant impact on client behavior.

Possible directions for future work include characterizing client
behavior, according to our hierarchical model, in other P2P live
streaming applications, further analyzing the correlation between
different model components as well as their impact on P2P proto-
col design and optimization, and building a realistic synthetic
workload generator for live P2P streaming applications. acknoAc-
knowledgementsThis research is partially funded by the authors’
individual grants from CNPq, CAPES e FAPEMIG as well as by the
Brazilian National Institute of Science and Technology for Web
Research (MCT/CNPq/INCT Web Grant No. 573871/2008–6).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.comcom.2012.02.012.
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