
Syndrome-Fortuna: A viable approach for Linux random
number generation

Sérgio Vale Aguiar Campos1, Jeroen van de Graaf1, Daniel Rezende Silveira1

1Departamento de Ciência da Computação – Universidade Federal de Minas Gerais (UFMG)
Belo Horizonte (MG) – Brazil

Abstract. This work presents a random number generator based on the in-
tractability of an NP-Complete problem from the area of error-correcting codes.
It uses a non-heuristic approach for entropy collection, taken from the Fortuna
design philosophy. We implemented the new generator inside the Linux kernel,
providing an alternative system interface for secure random number generation.

1. Introduction
Random number generators are the basis of several cryptographic systems. Its output must
be unpredictable by potential adversaries and should be produced fast and efficiently. The
most common way to achieve this is by using algorithms to mix and expand the out-
come of entropy sources. These algorithms are called pseudo-random number generators
(PRNGs). The quality of these generators and their applicability to protocols and security
applications have been widely studied in recent years.

In this work we present a PRNG based on the Fortuna architecture, proposed by
[Ferguson and Schneier, 2003]. Fortuna presents a new scheme for system events collec-
tion, that does not use any heuristics, avoiding entropy estimation problems. Its mixing
function is the AES algorithm, considered strong and efficient.

The PRNG we propose, called Syndrome-Fortuna, changes the mixing function of
Fortuna, using the syndrome decoding algorithm proposed by [Fischer and Stern, 1996].
We consider this an improvement, since the syndrome problem is known to be NP-
Complete, and has a formal proof of its strength.

We implemented Syndrome-Fortuna inside the Linux kernel version 2.6.30, pro-
viding an user interface for random numbers besides /dev/urandom. As we expected,
our generator is slower than the original Linux random number generator (LRNG). But it
does not use any entropy estimation heuristics and applies a strong and formally proved
algorithm as its core function.

1.1. Randomness concept

Random number generators emerged, initialy, for use in simulations and numerical anal-
ysis. These applications require efficiency and, especially, uniformity. The cryptography
evolution brought a new requirement on PRNGs. Secure applications needed secret keys,
generated randomly, to allow users to communicate safely. Since then, unpredictability
has become a fundamental requirement for pseudorandom number generators.

The only way to ensure that a generator seed is non-deterministic is by using real
sources of randomness. External sources of randomness collect data from presumably
unpredictable events, such as variations in pressure and temperature, ambient noise, or

122

timing of mouse movements and keystrokes. The concept of unpredictability is related
to human inability to predict certain complex phenomena, given its chaotic or quantum
essence.

Before using the collected randomness, however, it is necessary to estimate it. The
goal is to prevent that the internal state of the generator is updated with values potentially
easy to discover. In 1996 a flaw in the random number generator of Netscape browser
allowed that keys used in SSL connections were discovered in about one minute. The
problem, revealed in the work of [Goldberg and Wagner, 1996], was the use of system
time and the process id as sources of randomness. Even when the browser used session
keys of 128 bits, considered safe, they possessed no more than 47 bits of randomness,
very little to prevent that opponents using brute force could find the key value.

Entropy estimation is one critical point of random number generators design, be-
cause their security level is directly related to estimates precision. As we shall see, the
approach of entropy collection proposed by [Ferguson and Schneier, 2003] and adapted
in this work minimizes the problem of possible inaccuracy in the estimation of entropy.

2. Construction of a cryptographically secure random number generator
2.1. One-way functions
Intuitively, a function f is one-way if it is easy to compute but difficult to invert. In other
words, given x, the value f(x) can be computed in polynomial time. But any feasible
algorithm that receives f(x) can generate an output y such that f(y) = f(x) with only
negligible probability.

The existence of one-way functions is not proved. It is known that if P = NP
they certainly do not exist. But it is unclear whether they exist if P 6= NP . However,
there are several functions that are believed to be unidirectional in practice. One of them
is the SHA-1 hash function, used inside the Linux random number generator. There are
also functions that are conjectured to be unidirectional. Some examples are the subsets
sum problem and the discrete logarithm calculation. These functions belong to the class
NP, and supposing P 6= NP , and are unidirectional under some intractability assumption.

The main difference between the two types of one-way functions, besides the the-
oretical basis, is the computational cost. Functions based on intractable mathematical
problems require, in general, a larger amount of calculations per bit generated. As shown
in [Impagliazzo et al., 1989], cryptographically secure pseudorandom number generators
exists if, and only if, one-way functions exists.

In the generator presented in this paper we use the algorithm proposed by
[Fischer and Stern, 1996] as our one-way function. It is based on the syndrome decod-
ing problem, a NP-complete problem from the area of error-correcting codes.

2.2. Syndrome decoding problem
In coding theory, coding is used to transmit messages through noisy communication chan-
nels, which can produce errors. Decoding is the process of translating (possibly corrupted)
messages into words belonging to a particular code. A binary linear code is an error-
correcting code that uses the symbols 0 and 1, in which each word can be represented as a
linear combination of others, and each word has a weight, ie, a number of 1 bits, defined.

123

A binary linear code (n, k, d) is a subspace of {0, 1}n with 2k elements in which
every word has weight less than or equal to d. The information rate of the code is k/n
and it can correct up to bd−1

2
c errors. Every code can be defined by a parity matrix of

size n × (n − k) which multiplied (mod 2) by a vector of the code x =
(
x1, x2, . . . , xn

)
results in an all zero vector s =

(
0, 0, . . . , 0

)
of size (n−k), called syndrome. Conversely,

when the word multiplied by the parity matrix does not belong to the code, the value of
the syndrome is nonzero.

A randomly filled parity matrix defines a random binary linear code. For this code,
there is no efficient algorithm known that can find the closest word to a vector, given a
nonzero syndrome. Another difficult problem, known as syndrome decoding, is to find a
word of certain weight from its syndrome.

The latter problem is NP-Hard and can be described as follows: let a binary matrix
A = {aij} of size n × (n − k), a non-zero syndrome vector s and a positive integer w.
Find a binary vector x with weight |x| ≤ w, such that:

(
x1, x2, . . . , xn

)
·

a1,1 a1,2 · · · a1,n−k
a2,1 a2,2 · · · a2,n−k

...
...

an,1 an,2 · · · an,n−k

 =
(
s1, s2, . . . , sn−k

)
(mod 2)

The case in which we seek the vector x with weight |x| = w is NP-complete
[Berlekamp et al., 1978].

The fact that a problem is NP-Complete guarantees that there is no polynomial
time algorithm for solving the worst case, under the assumption that P 6= NP . Many
problems, however, can be solved efficiently in the average case, requiring a more detailed
study of each instance of the problem.

2.2.1. Gilbert-Warshamov Bound

To evaluate the hardness of a specific instance of the syndrome decoding problem we
will use a concept extensively studied and reviewed by [Chabaud, 1994], under which the
most difficult instances of the problem of syndrome decoding for random codes are those
with weights in the vicinity of the Gilbert-Warshamov bound of the code.

The Gilbert-Warshamov bound λ of a code (n, k, d) is defined through the relation
1− k/n = H2(λ) where H2(x) = −x log2 x− (1− x) log2(1− x) is the binary entropy
function.

According to the analysis of [Fischer and Stern, 1996], there is, on average, a vec-
tor for each syndrome when the weight is around the Gilbert-Warshamov bound of the
code. That is, the difficulty of finding a word is a function of the weight increasing until
the Gilbert-Warshamov bound, and decreasing thereafter. Thus, it is possible to define
a hard instance of the syndrome decoding problem when the weight is near the Gilbert-
Warshamov bound.

124

Figure 1. Gilbert-Warshamov bound, defined by the binary entropy function.

2.2.2. Formal definitions

Definition A function f : {0, 1}∗ → {0, 1}∗ is considered strongly unidirectional if the
following conditions apply:

• Easy to compute: there is a deterministic polynomial-time algorithm A such that
for every input x, an output A(x) = f(x) is computed.
• Hard to invert: for all probabilistic polynomial-time algorithm A′ and every posi-

tive polynomial p(n) large enough,

Pr(A′(f(Xn)) ∈ f−1(f(Xn))) <
1

p(n)

where xn is random and uniformly distributed over {0, 1}n

Let us consider a collection of functions related to the problem of decoding the
syndrome.

Definition Let ρ be in]0, 1[and δ be in]0, 1/2[. A collection SD(ρ, δ) is a set o functions
fn such that:

Dn = {(M,x),M ∈ bρnc × n, x ∈ {0, 1}n/|x| = δn}
fn : Dn → {0, 1}bρnc·(n+1)

(M,x)→ (M,M · x)

According to [Fischer and Stern, 1996], instances of the problem with weight δn
very small or close to n/2 are not difficult. The instances of the collection SD with the
weight δ near the Gilbert-Warshamov bound are believed to be unidirectional, although
there is no proof in this sense. Thus we have the following assumption of intractability:

Intractability assumption Let ρ be in]0, 1[. Then, for all δ in]0, 1/2[, such thatH2(δ) <
ρ, the collection SD(ρ, δ) is strongly unidirectional.

125

Note that if H2(λ) = ρ and δ < λ
2
, the intractability of SD(ρ, δ) is a special case

of decoding beyond half the minimum distance. Thus, the assumption becomes stronger
than the usual assumptions for the decoding problem [Goldreich et al., 1993].

Cryptographic applications based on the complexity of known problems have been
extensively studied and implemented in the last decades. Intractability assumptions are a
natural step in building such applications. At the current state of knowledge in complexity
theory, one cannot hope to build such algorithms without any intractability assumptions
[Goldreich, 2001, p. 19].

3. Syndrome-Fortuna
The purpose of this work is to develop a random number generator and implement it
inside the Linux kernel. The generator has its own scheme for entropy collection and the
generating function is based on the intractability of the syndrome decoding problem. We
will show that the proposed generator applies good grounds of security and is based on
sound mathematical principles.

The generator was designed with independent functions of entropy collection and
random values generation. Each one will be addressed separetely.

3.1. Fortuna: Entropy collection
[Ferguson and Schneier, 2003] proposed a cryptographically secure random number gen-
erator called Fortuna. The main contribution of Fortuna is the events collection system.
It eliminated the need of entropy estimators, used until then in most of the generators we
are aware of. Entropy estimation is commonly used to ensure that the generator state – or
seed – is catastrophically updated, i.e., with sufficient amount of randomness. This should
prevent potential adversaries who, for some reason, already know the seed, to iterate over
all the possible new states and maintain control over the generator. If the possible new
states are too many, it will not be feasible to try all of them.

3.1.1. Entropy accumulator

The Fortuna entropy accumulator captures data from various sources of entropy and uses
them to update the seed of the generator. Its architecture, as we shall see, keeps the system
secure even if an adversary controls some of the sources.

The captured random events must be uniform and cyclically distributed across n
pools of the generator, as shown in figure 2. This distribution will ensure an even spread
of entropy among pools, which will allow seed updates with successively larger amounts
of randomness.

Each pool can receive, in theory, unlimited random data. To implement this the
data is compressed incrementally, using the SHA 256 hash function, thus maintaining
pools with constant size of 256 bits.

The generator state will be updated when the P0 pool accumulate sufficient ran-
dom data. A variable counter keeps track of how often the seed has been updated. This
counter determines which pools will be used in the next update. A pool Pi will be used if,
and only if, 2i divides counter.

126

Figure 2. Entropy allocation among n pools. Data is compressed using the SHA
256 hash function.

Counter Used pools
1 P0
2 P0, P1
3 P0
4 P0, P1, P2
5 P0
6 P0, P1
7 P0
8 P0, P1, P2, P3

Table 1. Used pools in the 8 first updates of Fortuna generator

Table 1 shows the update strategy of the generator. As we can see, the higher the
number of the pool, less it is used in the update of the generator and, therefore, the greater
the amount of accumulated entropy. This allows the generator to adapt automatically to
attacks. If the opponents have little control over the sources of randomness, they can not
even predict the state of the pool P0, and the generator will recover from a compromised
state quickly, at the next reseed.

However, the opponent may control multiple sources of entropy. In this case he
probably knows a lot about the pool P0 and could reconstruct the state of the generator
using the previous state and the outputs produced. But when P1 is used in a reseed, it con-
tains twice the amount of randomness of P0. When P2 is used, it will contain four times
the amount of randomness of P0, and so on. While there are some truly unpredictable
sources, eventually one pool will collect enough randomness to defeat the opponents, re-
gardless of how many fake events they can generate or how many events they know the
system would recover. The speed of recovery will be proportional to the level of oppo-
nents control over the sources.

3.1.2. Initial estimate

The proposed scheme avoids the entropy estimate, as used in Linux. However it is still
necessary to make an initial entropy estimate in order to determine the minimum number
of events necessary to perform a catastrophic reseed. This estimate is calculated for the

127

pool P0 and determines when the generator state is updated.

To elaborate such, one should observe some aspects of the system as: the desired
security level; the amount of space occupied by the events and the amount of entropy
present in each event.

[Ferguson and Schneier, 2003] suggest a minimum of 512 bits for P0, for a level of
128-bit security. The initial entropy estimation plays an important role on system security,
but is mitigated by the fact that if the chosen value is too low, there will always be reseeds
with higher amounts of entropy. If the chosen value is too high, a possible recovery from
a compromise may take longer, but will inevitably occur.

3.2. Syndrome: Generating function

3.2.1. Construction of the generating function

We built a PRNG based on a hard instance of the syndrome decoding problem using
the SD collection of functions (ρ, δ) defined in section 2.2. Initially, we show that the
functions fρ,δn from the collection SD(ρ, δ) expand its inputs, ie, they have image sets
greater than the respective domain sets.

The domain Dρ,δ
n from fρ,δn consists of a matrix M of size bρnc × n and of vector

x of size n and weight δn. So the size of the domain set is 2bρnc·n ·
(
n
δn

)
. Yet, the image

set is formed by the same matrix M of size bρnc×n and a vector y =M ·x of size bρnc.
Thus, its size is 2bρnc·n · 2bρnc.

So, for the image set to be larger than the domain set, we need 2bρnc >
(
n
δn

)
. This

condition is satisfied whenH2(δ) < ρ according to the Gilbert-Warshamov bound defined
in section 2.2.1. That is, for a sufficiently large n and suitable δ and ρ, fρ,δn expands its
entry into a linear amount of bits.

Given an instance with fixed parameters ρ and δ from SD(ρ, δ) collection, we can
construct an iterative generating function Gρ,δ from the one-way function fρ,δn . For this,
we use an algorithm A that returns a vector x of size n and weight δn from a random
vector with log2

(
n
δn

)
bits. This algorithm is described in section 3.2.2. The generator Gρ,δ

is described in pseudocode in algorithm 1. Figure 3 illustrates its operation.

Algorithm 1 syndrome – Iterative generating function based on the syndrome decoding
problem.
Input: (M,x) ∈ Dρ,δ

n

Output: Print bit sequence
1: y ←M · x
2: Split y into two vectors y1 e y2. The firs with blog2

(
n
δn

)
c bits and the second with the

remaining bits.
3: print y2
4: x← A(y1)
5: Go to: 1

128

Figure 3. Syndrome generating function.

3.2.2. Generating words with given weight

As noted, the generator requires an algorithm to produce vectors with fixed weight. From
each entry of size blog2

(
n
δn

)
c, this algorithm must output a different vector x ∈ {0, 1}n

with weight |x| = δn. To build it, we use the lexicographic enumeration function shown
by [Fischer and Stern, 1996].

To explain the working of the lexicographic enumeration, we will use Pascal’s
Triangle. It is formed by the binomial coefficients

(
n
k

)
where n represents the row and k

the column. The construction follows the Pascal’s rule, which states:

(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(
n

k

)
for 1 ≤ k ≤ n

Each triangle component t(n, k) =
(
n
k

)
represents the number of existing words

with size n and weight k. Here t(n, k) equals the sum of two components immediately
above t(n − 1, k) and t(n − 1, k − 1). These components represent, respectively, the
number of words of size n starting with a 0-bit and starting with a 1-bit.

This way, we can generate the output word from an index i by making an upward
path in Pascal’s Triangle. We start from the component t(n, k) towards the top. When
the index i is less than or equal to the up-left component t(n − 1, k), we generate a 0-bit
and move to this component. When the index is higher, we generate a 1-bit and walk to
the up-right component t(n − 1, k − 1), decrementing the index at t(n − 1, k − 1). The
complete algorithm is described in pseudocode at the end of this section.

As an example, see Figure 4. We ilustrate a walk to generate a word of size n = 4
and weight k = 2, index i = 2.

The path begins at the component t(4, 2) =
(
4
2

)
= 6. As i = 2 ≤ t(3, 2) = 3, the

algorithm generates a 0-bit and walks to the component t(3, 2). Now, i = 2 > t(2, 2) = 1,
so the algorithm generates a 1 bit, updates the index i ← i − t(2, 2) and the path goes to
the component t(2, 1). And so it goes until you reach the top of the triangle, forming the
word (0, 1, 0, 1).

129

Figure 4. Walk in Pascal’s Triangle to generate word of index i = 2 within a set of
words of size 4 and weight 2

3.3. Combining Syndrome and Fortuna

The generating function constructed in 3.2.1 is based on the difficulty of finding a vector
x with weight w from its syndrome, given a random matrix M . Thus, the only part of
the function that actually makes up the internal state E, which must be kept secret, is the
vector x. We will use, then, the entropy collection scheme to update the internal state. It
should occur whenever the minimum amount of entropy is available in the P0 pool. This
way we ensure that the generating function receives the operating system randomness
over time.

At each request for random numbers, a check is made whether there is enough
entropy to update the internal state. This check is conditional on the minimum entropy in
the pool P0, as stipulated on the initial estimate. A minimum time lapse between reseeds
is also respected. [Ferguson and Schneier, 2003] suggested 100ms to prevent an adversary
to make numerous requests and flush out the entropy of the pools. Figure 5 illustrates the
complete workings of the generator.

The Syndrome-Fortuna update strategy preserves the one-way function direct
cryptanalysis resistance. Only the seed, the vector x, is updated from time to time. Re-
gardless of this update, any adversary that can reconstruct the internal state through the
output vector y and the matrix M has managed to solve a problem currently considered
computationally intractable.

Forward security is guaranteed by the feedback operation in which part of the
result vector y is used to choose the new vector x. An adversary can, at time t, know the
state of the generator Et = (xt,M, Pt), where M is the matrix, xt is the vector x at time
t and Pt represents all the Fortuna Pools at time t. In this case, the opponent can simply
find the last index value used in the lexicographic enumeration function A−1(xt) = y1t−1.
This value is part of the vector yt−1, as can be seen in figure 5. From there, to find the
value xt−1, or the last output value y2t−1 requires inverting the generating function.

The recovery to a safe state after a compromise – backward security – is guaran-
teed by the eventual update of vector x by the entropy collection system. An adversary
who controls the state of the generator Et = (xt,M, Pt) could possibly keep it until time
t + k, when the accumulated entropy is sufficient for a catastrophic reseed. At this point
the value of the vector x is changed by the hash function of Fortuna pools, as seen in
figure 5. As long as the opponent has not enough knowledge about the entropy added to

130

Figure 5. Syndrome-Fortuna operation. At each request is checked whether the
pool P0 has the minimum entropy and the time between reseeds is over 100ms.
If so the algorithm performs a reseed, incrementing a counter c and choosing
among the pools pi that satisfies 2i divides c. A SHA 256 is performed accross
the chosen pools and the result is used to index a word of size n and weight w.
Then, the generating function performs the multiplication between the chosen
vector and the matrix M producing the syndrome vector y. Part of this vector is
sent to the output and part is used as feedback, enabling the iterative generation
of random data .

the pools, the new state Et+k+1 should be out of his control.

Ideally a system recovery should require 128 entropy bits
[Ferguson and Schneier, 2003]. In the Fortuna entropy collection system this amount is
multiplied by the number of pools, since the entropy is distributed. Thus, this amount
rises to 128 ∗ n, where n is the number of pools. This value can be relatively high
compared to the ideal; however, this is a constant factor, and ensures that the system will
recover, at a future time.

In the above compromise case, considering the entropy input rate ω, the generator
recovery time would be at most k = (128 ∗ n)/ω. Adversaries could try to deplete the
system entropy while it is accumulated. They would need to promote frequent reseeds,
emptying the pools before they contain enough entropy to defeat them. This could be
done injecting false events on the pools through malicious drivers to keep the pool P0

filled, allowing the real entropy flush. This attack is unlikely, given that the opponent
would have to promote 2n reseeds before the system collects 128 ∗ n real entropy bits.
However, to avoid any attempt a minimum time between state updates is used to prevent
very frequent reseeds and the system entropy exhaustion.

131

3.4. Starting the generator

The initialization is a critical step for any random number generator that manages its
own entropy. The problems related to lack of randomness at initialization time must be
addressed according to each scenario. Therefore, it is beyond the scope of this paper to
define specific strategies.

However, it should be noted that the implemented entropy accumulator allows the
use of any source of randomness. Even a source of low quality, which can enter foresee-
able data in the pools, has not the capacity to lower the system entropy. Other strategies,
including the one used by the Linux kernel, estimate the collected amount of entropy.
These approaches do not allow questionable sources to be used, since a miscalculation
could lead to a security breach.

One good strategy to mitigate the problem of lack of entropy during boot is to
simulate continuity between reboots. For the Syndrome-Fortuna generator a seed-file was
implemented the same way as in Linux. The system writes a file with random data to disk
during shutdown and startup. At the startup, the seed is read, fed to the generator and the
output is written on disk before any request for random numbers. This prevents repeated
states when sudden hangs occur. At startup, this seed-file is used to refresh the pools.

4. Implementation, analysis and results

4.1. Testing methodology

One way to evaluate a random number generator quality is assessing its output’s statistical
behavior. This analysis does not guarantee, in any way, the security of a cryptographic
generator. However, it can reveal flaws on its design or implementation.

There are several libraries for statistical tests accepted by the scientific commu-
nity. We used the libraries SmallCrush and Crush from TestU01 library, developed by
[L’Ecuyer and Simard, 2007]. The first one implements a set consisting of 10 tests and
is recommended for a generator’s initial assessment. The second library applies 32 tests
with several configurations, evaluating a total of 235 random bits.

To evaluate the generator performance, we compared it with the Blum-Blum-Shub
generator, which has a simple construction, based on the integer factoring difficulty. We
also compared to the Linux kernel 2.6.30 generator (LRNG). TestU01 library was used to
measure the generators performance.

4.2. Statistical Results

The statistical tests results are presented in the shape of p-values, which indicate the like-
lihood of a sample Y present the sampled value y, considering true the null hypothesis
H0:

p = P (Y ≥ y|H0)

To illustrate this statistical approach, we evaluate a sample Y of 100 coin flips in which 80
times was randomly selected “heads” and 20 times “tails”. In this case, the null hypothesis
is the coin fairness and therefore Y is a cumulative binomial distribution. Thus, we have
p = P (Y ≥ 80) = 5.6 ∗ 10−10. The observed sample could occur with a fair coin
with only 5.6 ∗ 10−10 probability. This is not to tacitly reject the null hypothesis, but

132

according to a defined demand level, we can consider the sample clearly failed the applied
test. [L’Ecuyer and Simard, 2007] arbitrate as clear failures the p-values outside the range
[10−10, 1− 10−10].

All generators tested: BBS, Syndrome-Fortuna and LRNG passed the statistical
test libraries. All p-values were in the range [10−3, 1 − 10−3], forbidding us to reject
the null hypothesis. This means that, statistically, the generated values cannot be distin-
guished from truly random values.

4.3. Performance analysis

The Syndrome-Fortuna generator was evaluated through performance tests and compared
to the BBS and LRNG generators. We used a computer with an Intel Pentium Dual Core
T3400 2.16GHz with 2GB of RAM. We used loads of 100 bytes, 1 kB, 10kB, 100kB and
100kB intervals until complete 1MB of random data. Each generator had the generating
time clocked 3 times for each load.

Syndrome-Fortuna and LRNG were assessed while compiled into the kernel. The
BBS algorithm was used only as a benchmark for performance and was not implemented
within the kernel, being assessed with TestU01 library.

To evaluate the performance diferences between generators built inside and out-
side the kernel, we did tests with an implementation of Syndrome-Fortuna compiled in
user-space. The results were statistically indistinguishable from the results when the al-
gorithm was implemented inside the kernel. This does not necessarily imply that the same
would happen to the BBS algorithm, the only algorithm not implemented inside the ker-
nel. But for the purposes of this paper, we consider it satisfactory for the comparision
of the BBS, compiled in user space, with Syndrome-Fortuna and LRNG, built inside the
kernel.

The average speed of each generator, with the respective deviation, are shown in
table 2. The generators behavior for the different loads are summarized in figure 6.

Generator Speed (em kB/s)
LRNG 2664,0 ± 818,9
Syndrome-Fortuna 197,1 ± 58,2
BBS 31,4 ± 6,4

Table 2. Generators LRNG, Syndrome-Fortuna and BBS performance measure-
ment.

As expected, Syndrome-Fortuna underperforms the current Linux generator,
which is highly optimized for performance and does not have formal security proof.
When compared with the BBS generator, which has similar formal security features, the
Syndrome-Fortuna performance is 6.3 times higher.

5. Concluding remarks
During this research we studied several types of random number generators, statistical
and cryptographic. We conducted a detailed investigation of the Linux kernel generator,
and proposed and implemented a new generator based on two existing approaches.

133

Figure 6. Performance of random generators: Linux (LRNG) Syndrome-Fortuna
and Blum-Blum-Shub (BBS).

5.1. Conclusions from our research

Random number generators are an important part of the complex set of protocols and ap-
plications responsible for ensuring information security. In a scenario of rapid change,
when the computing reach unexplored places, and new users, the framework for crypto-
graphic applications must adapt to provide the desired security.

For random number generators, this means adapting to new sources of entropy,
new forms of operation. It is not difficult to imagine scenarios where a keyboard, mouse
and hard drive are less present, imposing restrictions on the randomness of the systems.
The strategy we implemented for entropy collection is in line with this need. It does
not require estimations and can use any entropy sources, even the ones with questionable
randomnness.

Conversely, as noted in its operation, the Linux random number generator faces a
difficulty to adapt to new entropy sources. All of them must pass through a heuristic that,
if inaccurate, can lead to a generator low entropy state. In a running Linux Ubuntu 9.10,
we observed the entropy collection only from the keyboard, mouse and hard drive, while
a series of possibly good entropy sources were available, such as wireless network cards,
software interrupts, etc.

As for the random values generation, per se, the implementation applies solid
mathematical principles derived from the theory of error-correcting codes, and predicting
them can be considered as difficult as the syndrome decoding problem, which is NP-
complete.

134

The proposed algorithm can be considered for use in various scenarios, especially
on diskless servers, or in cloud-computing scenarios, where the usual randomness sources
are not present. We believe that the generator implements a satisfying trade-off, providing
bits with good statistical properties, solid security and reasonable speeds

5.2. Future work

We believe that the Syndrome-Fortuna time and memory performance can be improved
considerably by changing the generating function “A”, shown in figure 5. We note that
much of the processing and, clearly, most of the memory costs are related to the problem
of obtaining the vector x of size n and weight w from a random index i. The approach
used in the work of Augot et al. [Augot et al., 2005] could reduce drastically these costs.
Generator specific parameters should be studied and modified to allow this use.

As shown, the entropy collection strategy allows the use of new randomness
sources, independent of detailed entropy studies. A natural extension of this work is
to identify these sources and promote their interconnection with the Linux kernel entropy
collection system.

References
Augot, D., Finiasz, M., and Sendrier, N. (2005). A family of fast syndrome based cryptographic

hash functions. In Dawson, E. and Vaudenay, S., editors, Mycrypt 2005, volume 3715, pages
64–83. Springer.

Berlekamp, E., McEliece, R., and Van Tilborg, H. (1978). On the inherent intractability of certain
coding problems (corresp.). IEEE Transactions on Information Theory, 24(3):384–386.

Chabaud, F. (1994). On the security of some cryptosystems based on error-correcting codes. In
EUROCRYPT, pages 131–139.

Ferguson, N. and Schneier, B. (2003). Practical Cryptography. Wiley & Sons.

Fischer, J.-B. and Stern, J. (1996). An efficient pseudo-random generator provably as secure as
syndrome decoding. In EUROCRYPT, pages 245–255.

Goldberg, I. and Wagner, D. (1996). Randomness and the Netscape browser. Dr. Dobb’s Journal
of Software Tools, 21(1):66, 68–70.

Goldreich, O. (2001). Foundations of Cryptography. Volume I: Basic Tools. Cambridge University
Press, Cambridge, England.

Goldreich, O., Krawczyk, H., and Michael, L. (1993). On the existence of pseudorandom genera-
tors. SIAM J. Computing, 22(6):1163–1175.

Impagliazzo, R., Levin, L., and Luby, M. (1989). Pseudorandom generation from one-way func-
tions. In Proc. 21st Ann. ACM Symp. on Theory of Computing, pages 12–24.

L’Ecuyer, P. and Simard, R. (2007). Testu01: A c library for empirical testing of random number
generators. ACM Transactions on Mathematical Software, 33(4).

135

	02_ANAIS
	09

