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ABSTRACT
Recently, a number of scalable stream sharing protocols have
been proposed with the promise of great reductions in the
server and network bandwidth required for delivering pop-
ular media content. Although the scalability of these proto-
cols has been evaluated mostly for sequential user accesses,
a high degree of interactivity has been observed in the ac-
cesses to several real media servers. Moreover, some studies
have indicated that user interactivity can severely penalize
the scalability of stream sharing protocols.

This paper investigates alternative mechanisms for scal-
able streaming to interactive users. We first identify a set
of workload aspects that are determinant to the scalabil-
ity of classes of streaming protocols. Using real workloads
and a new interactive media workload generator, we build a
rich set of realistic synthetic workloads. We evaluate Band-
width Skimming and Patching, two state-of-the-art stream-
ing protocols, covering, with our workloads, a larger region
of the design space than previous work. Finally, we propose
and evaluate five optimizations to Bandwidth Skimming, the
most scalable of the two protocols. Our best optimization
reduces the average server bandwidth required for interac-
tive workloads in up to 54%, for unlimited client buffers,
and 29%, if buffers are constrained to 25% of media size.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols; C.4 [Computer Systems Organization]: Per-
formance of Systems; I.6.5 [Simulation and Modeling]:
Model Development

General Terms
Performance, Measurement, Design
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Scalable Streaming, Interactivity, Workload Model
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1. INTRODUCTION
The distribution of streaming media in the Internet has

faced a major challenge since its beginning: the severe lim-
itations on scalability due to the high server and network
bandwidth requirements. The conventional unicast trans-
mission clearly does not scale, preventing media delivery to
a large number of users. The efforts towards reducing band-
width requirements have led to a plethora of new mecha-
nisms including more bandwidth-efficient encoding methods
[21], new caching strategies for reducing network and server
load ([14], and references within), and scalable delivery pro-
tocols that rely on stream sharing to reduce bandwidth re-
quirements [2, 3, 5, 7, 8, 9, 11, 12, 15].

Among the existing scalable streaming protocols, Patch-
ing [12] and Bandwidth Skimming [8, 9] are of particular
interest, since they significantly reduce bandwidth require-
ments while still providing immediate client service. Such
great achievements rely on the same principle: let clients
receive data from two streams, simultaneously. The client
player shows the data received in one of the streams to the
user as it is received, and simultaneously buffers the data
received in the earlier stream. The buffered data allows the
later client to “catch up” with the one receiving the ear-
lier stream. At this point, both streams merge and share
the transmission of the rest of the file. Whereas Bandwidth
Skimming allows stream merges to occur hierarchically, thus
creating an arbitrarily deep merging tree, Patching restricts
stream merges to a flat two-level merging tree.

Both protocols have been extensively analyzed, mainly
under the assumption of synthetic sequential workloads,
where clients request entire files, without interruption. For
such workloads, both protocols have been shown to achieve
significant bandwidth savings for varying client request rates.
Because streams are merged hierarchically, Bandwidth Skim-
ming scales better with request rate than Patching [9].

However, a high degree of interactivity has been observed
in many real workloads [1, 4, 6, 16]. In other words, users of
real media services typically do not access the media sequen-
tially. Rather, they often interrupt playback, pausing, jump-
ing (forwards or backwards), fast forwarding and rewinding.
A key question that arises is, thus: how do existing stream-
ing protocols scale in the presence of interactive users?

Previous efforts towards addressing this question include
protocol evaluation with only a few real workloads [1, 4], and
derivation of analytical bounds for general, and thus not
necessarily realistic, interactive patterns [13, 18]. Though
somewhat limited, these efforts reached the same conclu-
sion: protocol scalability is severely degraded for interactive



users. The opportunities for stream sharing are reduced as
requests to the same media arriving close in time at the
server are often for non-overlapping segments. For very in-
teractive users, the protocols may approach unicast, trans-
mitting the same data multiple times, once for each request.

We are aware of only one streaming protocol optimized for
interactive users, namely, the best-effort Patching protocol
proposed in [15]. However, protocol scalability was evalu-
ated only for simplistic (i.e., non-realistic) interactive pat-
terns. Thus, scalable streaming to highly interactive users
with immediate service is still an open and demanding issue.

This paper studies alternative mechanisms for scalable
streaming to interactive users. We start by identifying a
set of interactive workload aspects that are determinant to
protocol scalability, aiming at facilitating the exploration of
the protocol design space. Using five real media workloads
and a new generator of realistic interactive media workloads,
we build a rich set of synthetic workloads, falling into differ-
ent application domains (entertainment, educational, audio
and video) and having varying degrees of interactivity.

We then evaluate Bandwidth Skimming and Patching us-
ing our synthetic interactive workloads. Our experiments,
covering a larger region of the protocol design space than
previous work, show that Patching degrades much faster
than Bandwidth Skimming as the degree of interactivity in-
creases. Nevertheless, the scalability of Bandwidth Skim-
ming still suffers for very interactive workloads. Finally,
we propose and evaluate five optimizations to Bandwidth
Skimming. The optimizations exploit characteristics of real
workloads, such as high locality of reference [6], as well as
inherent characteristics of the original protocol, and rely on
buffering at the client to reduce the number of times the
server has to transmit the same data.

This paper aims at reducing the average server bandwidth
required to provide immediate service to interactive users.
The reasons for focusing on average bandwidth are twofold.
First, our results can be directly compared to most previous
studies. Second, Tan et al has shown that, due to statis-
tical fluctuations on the request rates for multiple files, the
amount of bandwidth a server should be provisioned with to
sustain an anticipated load is approximately the same as the
average bandwidth required to sustain that load [19], assum-
ing Poisson arrivals (as in [1, 6]). The focus on streaming,
as opposed to download, stems from the greater bandwidth
savings achieved by the former, when both strategies use
flow sharing (i.e., multicast), even for relatively long start-
up latencies [18]. Unlike scalable streaming, multicast-based
download protocols approach unicast for immediate client
service. Moreover, although we target server bandwidth, we
also show some preliminary results on network bandwidth
requirements. Finally, although our optimizations are de-
scribed as extensions to Bandwidth Skimming, they can be
applied to any hierarchical stream merging protocol [2, 5].

The main contributions of this paper are:

• Identification of interactive workload aspects that are
key to the scalability of several streaming protocols.

• A generator of realistic interactive media workloads.

• A more comprehensive quantitative evaluation of
Patching and Bandwidth Skimming for a rich and large
set of synthetic realistic interactive workloads.

• The proposal of five protocol optimizations for further
reducing bandwidth requirements for interactive users.

• A thorough quantitative evaluation of the optimized
protocols for a large number of realistic workloads.

Our most relevant results show that: (1) for very inter-
active workloads, Bandwidth Skimming reduces the average
required server bandwidth in up to 73%, compared to Patch-
ing, and (2) our best protocol optimization, which combines
the efforts of three other optimizations, reduces the average
server bandwidth required by the original Bandwidth Skim-
ming in up to 54% for unlimited client buffer, and 29% for
buffers constrained to only 25% of media size.

The rest of this paper is organized as follows. Section 2
discusses prior work. Our realistic interactive media work-
loads are presented in Section 3. Section 4 discusses the im-
pact of interactivity on current protocols. Our protocol op-
timizations are presented and evaluated in Section 5. Client
and network bandwidth requirements are briefly discussed
in Section 6. Section 7 offers conclusions and future work.

2. BACKGROUND
This section provides an overview of previous efforts to-

wards designing scalable streaming protocols. Existing pro-
tocols are presented in Section 2.1. Section 2.2 discusses
previous work on streaming to interactive users.

2.1 Current Scalable Streaming Protocols
The conventional unicast streaming clearly does not scale

with the number of users, as each user receives an indepen-
dent stream. In an effort to address this problem, a number
of scalable streaming protocols, which rely on stream shar-
ing, have been proposed [2, 3, 5, 7, 8, 9, 11, 12, 15]. Two pro-
tocols of particular interest for providing immediate service
while still greatly reducing server and network bandwidth
requirements are Bandwidth Skimming and Patching.

Bandwidth Skimming [8, 9] is based on the hierarchical
merging of multicast streams to reduce bandwidth require-
ments. The basic idea is that, upon arrival of a client re-
quest, a new (IP-level or application-level) multicast stream
is created to deliver the media. In one variation of the pro-
tocol, called Closest Target, the client listens to the new
multicast stream as well as to the closest previously created
and still active multicast stream (its target). When the new
stream has delivered all of the data that the client missed in
the target stream, it is terminated, and all clients listening
to the target are now “merged”. The clients of the “merged”
stream start listening to a new target stream, thus creating a
hierarchical merging tree. However, if during the merge at-
tempt, the target stream terminates before the later stream
is ready to catch up with it, the clients listening to the later
stream simply start listening to the next closest target. The
data received from the target during the unsuccessful merge
attempt, stored in a local merge buffer, are lost.

Although there are other strategies for building the hier-
archical merging tree [2, 5, 8, 9], the simple Closest Target
algorithm was shown to have average server and network
bandwidth requirements very close to optimal [9, 22]. Fur-
thermore, unlike other protocols, Bandwidth Skimming can
be applied even if client bandwidth is less than twice the
streaming rate [8]. Throughout this paper, we use the term
Bandwidth Skimming to refer to the Closest Target protocol
with client bandwidth equal to twice the streaming rate.



In Patching [12], the arrival of a client request triggers
the creation of a multicast stream to deliver the requested
media. A later arriving client joins the on-going multicast
stream and receives the missed media prefix from a sepa-
rate unicast stream. The algorithm limits the bandwidth
required for unicast streams by using a threshold window
parameter. If the missed prefix is longer than the threshold
window, the server creates a new multicast stream to deliver
the entire media file. Note that the merging tree created by
Patching is limited to two levels. In contrast, Bandwidth
Skimming may create arbitrarily deep merging trees.

Both Patching and Bandwidth Skimming have been shown
to significantly reduce bandwidth requirements for sequen-
tial workloads [3, 8, 9, 11, 12]. For such workloads and
Poisson arrivals, the average server bandwidth required by
Patching increases with the square root of the average num-
ber of simultaneous requests received during media playback
[9, 11]. In contrast, because streams are merged hierarchi-
cally, the average server bandwidth required by Bandwidth
Skimming grows only logarithmically with this number [9].

2.2 Streaming to Interactive Users
A number of studies have uncovered a high degree of

user interactivity in several real media workloads [1, 4, 6,
16]. Some of them have also shown that the scalability of
stream sharing protocols reduces significantly for a few spe-
cific workloads [1, 4]. Moreover, recent work [13, 18] on an-
alytically deriving the minimum required server bandwidth
for immediate service to interactive users showed a great in-
crease from previous lower-bounds for sequential workloads
[9]. Those two studies are based on somewhat arbitrary user
access models and not on real workloads (although [18] uses
real workloads to motivate their access models). Thus, the
accuracy of the proposed lower-bounds is still unknown.

The only streaming protocol optimized for interactive
users we are aware of is the best-effort Patching strategy pro-
posed in [15]. Based on buffering at the clients, the proposed
protocol is a complex hybrid strategy that allows merging
trees of up to three levels. It was evaluated under a very
restricted model of interactivity, which was not driven from
real workload observations. Moreover, restricting merging
trees to only three levels may not achieve all the stream
sharing an unconstrained merging tree is able to provide.

This paper contributes to previous work by: (1) provid-
ing a more comprehensive evaluation of Patching and Band-
width Skimming for realistic workloads, with varying de-
grees of interactivity, and (2) proposing and evaluating a
number of protocol optimizations for interactive users.

3. INTERACTIVE MEDIA WORKLOADS
A comprehensive evaluation of streaming protocols re-

quires a set of realistic workloads that covers as much of
the protocol design space as possible. Towards obtaining
such workloads, Section 3.1 identifies interactive workload
aspects that are key to protocol scalability. These aspects
are then used, in Section 3.2, to generate a large number of
realistic synthetic interactive media workloads.

3.1 Relevant Interactive Workload Aspects
This section aims at identifying a small set of interactive

workload aspects that are key to the scalability of streaming
protocols. We start by noting that, for sequential workloads
and Poisson arrivals, the average server bandwidth required

to sustain a given load depends only on the normalized re-
quest rate N , expressed as the number of simultaneous re-
quests received during media playback (N = λT , where λ is
the request rate and T is the media playback time) [9, 11].

The situation is far more complex for interactive work-
loads, where each user session consists of a number of re-
quests to selected media segments. In this case, the average
required server bandwidth depends not only on N , but also
on a number of other parameters, such as: number of re-
quests per session, request start position, request duration,
frequency of each interaction type (i.e., pause, jump, etc),
period of user inactivity between consecutive requests to the
same media, and jump distance, i.e., the amount of media
skipped in a jump (forwards or backwards). Moreover, these
parameters may vary greatly with content type and media
size, and some of them, such as request start position and
request duration, are generally not independent [6]. These
factors turn the exploration of the design space of streaming
protocols for interactive users into a rather complex task.

In order to better understand the protocol design space,
we must identify a smaller set of key workload aspects, de-
rived from the aforementioned list, which capture the pri-
mary impact of the workload on protocol scalability and dis-
tinguish the behavior of alternative protocol optimizations.

We argue that the primary impact of interactive work-
loads on the scalability of streaming protocols, in particular
stream sharing, is captured by two major factors: temporal
dispersion and spatial dispersion. The term temporal disper-
sion refers to the interactive request rate N . Lower temporal
dispersion implies a higher request rate and, thus, a larger
number of successful stream merges. The term spatial dis-
persion is used to refer to the amount of media that two
consecutive requests have in common, and thus that can
be shared between them. In other words, it expresses the
amount of overlapping media between consecutive requests.
Lower spatial dispersion implies longer overlaps and, thus,
more successful merges. The amount of overlap, and thus,
the degree of spatial dispersion, is defined by two workload
parameters: request start position and request duration1.
Note that temporal dispersion is not a new definition, but
rather another term for request rate, chosen so as to empha-
size the impact of the two types of dispersions on protocol
scalability. Therefore, the three parameters that determine
the degree of temporal and spatial dispersion in a workload
and, in turn, impact protocol scalability are normalized re-
quest rate N , request start position and request duration.

Figure 1 illustrates how these parameters affect tempo-
ral and spatial dispersions. It shows four workloads, each
with ten requests to the same 25-minute media during the
same time interval. Each line represents a request. Request
arrival times are marked on the x-axis. Y-axis gives start
and end positions in the media of each requested segment.
Figure 1(a) shows a sequential workload, with low temporal
dispersion, no spatial dispersion, and, thus, great opportu-
nities for successful stream merges. The workload in Figure
1(b) has the same request rate N=5, but varying request
start positions and durations, and, thus, higher spatial dis-
persion. There are fewer opportunities for successful merges.
Compared to it, the workload in Figure 1(c) has the same

1Other workload aspects are captured by these parameters.
For example, a jump distance between two requests is given
by the first request end position, adding up its start position
and its duration, and the second request start position.
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(a) Sequential Workload
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(b) Higher Spatial Disp.
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(c) Lower Spatial Disp.
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(d) Low Temporal Disp.

Figure 1: Dispersion in Media Workloads

temporal dispersion but lower spatial dispersion, since all
requests are for a media prefix, and, thus, has a larger num-
ber of successful merges. Finally, compared to Figure 1(c),
Figure 1(d) shows a workload with the same spatial disper-
sion but lower temporal dispersion (N=10), and thus, more
opportunities for successful merges.

In addition to the three aforementioned workload param-
eters, the effectiveness of several classes of protocol opti-
mizations may also be affected by other specific workload
aspects. For instance, a high locality of reference in the re-
quests within a user session, due to frequent pauses and
small jump distances, implies that buffering and prefetching
may significantly improve protocol scalability. More specifi-
cally, buffering previously retrieved data may benefit future
requests within the same session. Thus, the number of re-
quests per session is also relevant. Finally, the effectiveness
of optimizations that rely on prefetching when the user is
paused is affected by the duration of inactive periods.

Therefore, a thorough evaluation of streaming protocols
for interactive workloads must consider the following deter-
minant workload parameters: request rate, request dura-
tion, request start position, number of requests per session,
locality of reference and duration of inactive periods.

3.2 Realistic Interactive Media Workloads
In [6], we performed an extensive characterization of four

real media workloads falling into three different applica-
tion domains: entertainment video, entertainment audio and
educational video. The educational workload is from the
eTeach media server, that delivers content at a major US
university [10]. It includes variable length videos, from short
announcements (under 5 minutes) to 50-60 minute lectures.
The three entertainment workloads contain accesses to au-
dio and video files, typically under 10 minutes, and were
collected at two of the largest content and service providers

in Latin America, one of which is [20]. Key conclusions of
that study are: (a) some workloads exhibit a high degree
of user interactivity, as in [1, 4, 16], and (b) the degree of
interactivity varies with content type and media size. In par-
ticular, higher interactivity is more common among users of
long educational videos. More recently, we have also ana-
lyzed a three-year log of accesses to MANIC, an educational
media server from another US university [17], reaching re-
sults that closely agree with those for eTeach. Collectively,
this is a large and rich set of real commercial and educational
workloads, which fall into different typical streaming appli-
cation domains and enable a more comprehensive evaluation
of scalable streaming media protocols than previous efforts.

The following sections describe how our five real work-
loads are used to facilitate the exploration of the protocol
design space. Section 3.2.1 introduces a new synthetic work-
load generator, used to create a large set of workloads cap-
turing key aspects of real interactive workloads. Section
3.2.2 discusses a categorization of our synthetic workloads
into groups that share similar interactive patterns.

3.2.1 Synthetic Media Workload Generator
Our new synthetic media workload generator uses, as in-

puts, a trace of sessions to a media object and a target
session arrival rate, and produces an output session trace
with interactive patterns similar to the input trace. Differ-
ent synthetic workloads can be built from the same input
trace, varying the random seed and the target session rate.
Note that the request rate N of a workload is a function of
the session rate and the number of requests per session.

For a given input trace, our generator first builds a state-
transition model, where each state represents a ten-second
segment of the media object. Additional states are added
to represent a pause and a stop (i.e., end of session). Fast
forwarding and rewinding are rare in our workloads [6], and
thus are not included. The probabilities of starting a session
at each segment state as well as the transition probabilities
between pairs of states are computed from the input trace. A
duration is associated to each state (except the stop state).
Segments that are always fully played in the input trace
have duration equal to the segment size. Segments that are
partially played have duration equal to the average segment
playback time in the trace. The pause state has a duration
equal to the average period of user inactivity in the trace.
We refer to this state-transition model as a workload profile.

An output session trace is then created assuming session
arrival process to be Poisson [1, 6]. User behavior within
each session, including number of requests, jump distances
and periods of inactivity, are extracted from the workload
profile. The durations of pause and partially played seg-
ments are exponentially distributed with means equal to the
durations of the corresponding states.

We generated workload profiles from 36 session traces,
each to a different popular object in our five real workloads.
These traces were selected because: (1) they contain enough
requests to guarantee our workload models (one for each
trace) are statistically valid, and (2) they exhibit different
profiles of interactive behavior. Two typical profiles, ex-
hibiting very different interactive patterns, are illustrated in
Figure 2(a-b). The profiles show, for each request, the start
and end positions in the media, ordered by start position.

We evaluated the accuracy of our synthetic workload gen-
erator in two ways. First, we compared the cumulative dis-
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Figure 2: Workload Profiles and Workload Model Validation.

tributions of request start position and request duration for
each pair of real and corresponding synthetic trace (with the
same request rate N). For both parameters and all pairs of
traces, the sum of squared differences between the (synthetic
and real) distributions, normalized by the x-axis scale, are
under 0.03. Second, we measured the average number of
simultaneous streams (i.e., the average bandwidth required
by unicast) for each pair of traces. Figure 2(c) shows the
results, one point per pair of trace2. Synthetic and real
measures closely agree, with errors under 27%, on average.
Thus, given the complexity of real user interactive patterns,
we believe our workload model does capture, at least to a
first order, the key characteristics of our real workloads.

3.2.2 Categories of Interactive Workloads
Using the aspects identified as key to streaming scalability,

we group our workload profiles into three categories, namely:

High Interactivity (HI): these workloads have average
request duration under 20% of media duration and av-
erage request start position somewhere between 30%
and 60% of media size. Typically, less than 30% of the
requests start at the beginning of the media, and ses-
sions have at least three requests. Typical HI profiles
are those for long educational videos.

Low Interactivity (LI): these workloads have longer re-
quests (at least 20% of media duration, on average),
with start position heavily concentrated on the begin-
ning of the media. There is usually less than two re-
quests per session. Typical LI profiles are those for
audio and very short videos (less than 90 seconds).

Medium Interactivity (MI): these workloads have aver-
age request duration under 20% of media duration,
and start positions more concentrated on specific me-
dia points (below 30% or above 60% of media size, on
average). Typical MI workloads contain sessions to
entertainment videos, with less than three requests.

Out of our 36 session traces, 11 fall into the HI category,
8 into the MI category and 17 in the LI category. Figures
2(a-b) show typical profiles of HI and LI workloads. MI
workloads exhibit somewhat intermediate behavior. We re-
fer to [6] for a detailed description of our real workloads.

2The very low per-object load in the analyzed servers moti-
vates the generation of realistic but heavier workloads.

Locality of reference and duration of inactive periods are
not directly captured in our categorization. However, we
note that our real and synthetic workloads exhibit a high
locality of reference. On average, 33% of interactions are
pause and 54% are jump backwards. Furthermore, the av-
erage jump distance is under 230 seconds, and inactive peri-
ods last for 286 seconds, on average. These results motivate
some of the protocol optimizations proposed in Section 5.

The following sections evaluate current streaming proto-
cols and new protocol optimizations for all of our synthetic
workload profiles. Since workloads in the same category
have similar interactive patterns, and, thus, qualitatively
similar impact on protocol scalability, we show representa-
tive results for one instance of each profile. For each profile,
we vary the request rate N to evaluate the impact of load
intensity. Our results are average of five workloads, created
from the same profile and different random seeds, and have
standard deviation under 2% of the mean, in all cases.

4. IMPACT OF INTERACTIVITY ON
CURRENT STREAMING PROTOCOLS

This section evaluates the scalability of two state-of-the-
art streaming protocols, Patching and Bandwidth Skimming,
for realistic interactive workloads. The evaluation uses our
rich set of synthetic workloads and a wide range of request
rates, thus covering a larger region of the protocol design
space than prior work [2, 3, 5, 8, 9, 11, 12, 15].

Simulators of Patching and Bandwidth Skimming were
built and validated for sequential workloads. For a range
of request rates, the measured average server bandwidth re-
quired by both protocols differ from the corresponding ana-
lytical results [9, 11] by at most 11%. The simulators were
then extended, with minor changes, to execute interactive
workloads. One issue we had to address is how to apply the
Patching threshold window to interactive requests. As in [3],
we chose the less intrusive modification of applying the op-
timal threshold window [11] only to requests for a prefix.
Thus, only streams starting at the beginning of the media
can be merged. With no parameter, applying Bandwidth
Skimming to interactive workloads was straightforward.

Figure 3 shows the average server bandwidth, in number
of streams, required by Patching, Bandwidth Skimming and
unicast for typical workload profiles, with varying degrees of
interactivity and request rates. Figure 3(a) shows results for
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sequential and LI workloads. Figure 3(b) shows results for
HI and MI workloads. Note that for a given request rate,
unicast transmission requires less average server bandwidth
for HI and MI workloads than for LI workloads, since the
more interactive the workload is, the smaller the amount of
media retrieved by each request (see Section 3.2.2).

Clearly, Bandwidth Skimming scales much better with re-
quest rate than Patching, for all workload profiles. Com-
pared to Patching, Bandwidth Skimming reduces the aver-
age required server bandwidth for LI and HI workloads in
up to 88% and 73%, respectively. The poor scalability of
Patching stems from the limited opportunities for sharing
in the two-level merging trees of requests for media prefixes.
The frequency of such requests decreases with the degree of
interactivity, and scalability degrades, approaching unicast.

Despite the superiority over Patching, the scalability of
Bandwidth Skimming still suffers for very interactive HI and
MI workloads, for which the high spatial dispersion causes
many stream merge attempts to fail. Thus, a large amount
of prefetched data are lost, and often requested again in the
future. Bandwidth savings are, thus, very modest, especially
for low request rates. The next section discusses several
optimizations, applied to Bandwidth Skimming, that avoid
data losses inherent to the original protocol, reducing the
number of times the server has to retransmit the same data.

5. OPTIMIZED STREAMING PROTOCOLS
FOR INTERACTIVE WORKLOADS

This section introduces our new protocol optimizations,
which are described in Section 5.1 and evaluated in Section
5.2. A hybrid protocol, combining the efforts of multiple
optimizations, is presented and evaluated in Section 5.3.

5.1 Description of the Protocol Optimizations
This section introduces four protocol optimizations that

aim at reducing the average required server bandwidth for
very interactive workloads, for which Bandwidth Skimming
and Patching fail to deliver good scalability. Bandwidth
Skimming, the most scalable of the two protocols, is chosen
as baseline, although some of our optimizations can be ap-
plied to other stream sharing protocols as well (see below).

The common strategy in our optimizations is to save server
bandwidth by reducing the number of transmissions of the
same data to one or more users. Thus, our optimizations
rely on buffering, at the user machine, of media segments
previously received by the user or currently being delivered
to other users. Future user requests to segments stored in his
buffer are served locally. A client buffer exists only within
a user session. Thus, its content is flushed at the end of the
session. Moreover, although the buffer is presented as local
to the user, managed by the client player, it could also be
managed by an agent (e.g., a proxy), on behalf of the client.

Our protocol optimizations, named Locality, Silent

Prefetch, Keep Merge Buffer and Preserve Merg-

ing Tree, are described next. Their design is driven by
characteristics of our real workloads, such as high locality of
reference, as well as inherent characteristics of Bandwidth
Skimming, namely, the hierarchical merging tree and the
data losses due to unsuccessful merge attempts.

Locality (LOC) buffers all media segments played by the
user, exploiting the high locality of reference and the signifi-
cant fraction of jump backwards found in real workloads [1,
6]. Since the buffer content is useful only for requests within
the same session, LOC should perform best for very inter-
active workloads, with typically a large number of requests
per session. Note that, under LOC, the content stored in
the buffer depends only on the segments requested by the
user within the session, and not on the request rate N .

Silent Prefetch (SP) exploits periods when the client
is silent, i.e., it is not streaming from the server (and thus
not using its bandwidth), to prefetch data currently being
delivered to other users. The client is silent when the user
is paused or playing from the local buffer. During such peri-
ods, the client listens to the active server stream that is the
closest (i.e., delivering the closest segment) to the segment
that was most recently played by the user. It also listens
to the target of this stream (in the Bandwidth Skimming
sense), if any. If the streams finish during the silent period,
the client starts listening to the next (two) stream(s). Note
that the content buffered under SP does depend on other
users’ requests and thus on the request rate. Nevertheless,
the client has some control over this content, as it always
tries to store segments that are close to the current playback
position, and thus, are most likely to be accessed next.

Keep Merge Buffer (KMB) stores in the buffer the
segments that would otherwise be discarded during unsuc-
cessful merge attempts. The client has little control over the
buffer content, as it depends on the number, the duration
and on the target of each unsuccessful merge attempt.
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(c) LI Workload.

Figure 4: Average Server Bandwidth Savings Over Bandwidth Skimming (unlimited client buffers).

Preserve Merging Tree (PMT) tries to prevent on-
going merge attempts to be interrupted when users pause.
Consider a stream X currently being listened by only one
client and involved in two on-going merge attempts (i.e., it
is a target of stream Y and it is also trying a merge towards
stream Z). If the user receiving stream X pauses, the server
extends X to allow the merge attempts to proceed and, if
successful, save bandwidth. The paused client continues to
listen to the extension of X , storing segments in its buffer.
If the user resumes at a position nearby (high locality of
reference), the next segments will be found in the buffer.

If client buffer space is constrained, our optimizations rely
on the high locality of reference present in our workloads to
prioritize segments that are closer (either forwards or back-
wards) to the segment most recently played by the user, and
thus most likely to be requested in the near future. Finally,
we note that our optimizations can be applied if clients have
receive bandwidth less than twice the streaming rate, as
the original Bandwidth Skimming [8]. Moreover, LOC and
SP are general strategies that can be applied, with minor
changes, to other stream sharing protocols as well.

5.2 Evaluation
This section provides a quantitative evaluation of our pro-

tocol optimizations for varying workloads and request rates.
Our validated Bandwidth Skimming simulator was modified
to implement the optimizations. Next, we show a few key
results that capture the most relevant scalability trade-offs.

We start by noting that client buffering modifies the se-
quence of requests that are sent to the server, since some of
the requested segments are found in the buffer. This change
in the server workload impacts the effectiveness of any pro-
tocol based on client buffering in two opposing directions.
On one hand, previously buffered data need not be retrans-
mitted by the server in future accesses, thus reducing server
bandwidth requirements. On the other hand, if buffer con-
tent is fragmented, user requests are splitted into a number
of smaller and more spatially dispersed requests before be-
ing sent to the server. The higher spatial dispersion incurs a
smaller number of successful merges, thus increasing server
bandwidth requirements. Request fragmentation is further
discussed at the end of this section.

Figure 4(a-c) shows average server bandwidth savings of
each optimization over Bandwidth Skimming as a function
of request rate N . Negative values represent bandwidth

penalty. The figure shows results for typical HI, MI and
LI workload profiles and unlimited client buffers.

KMB, SP and PMT share the same overall behavior, for
all workloads analyzed. Recall that the data buffered un-
der these optimizations depend on the streams currently
being delivered and, thus, on N . For small values of N

(i.e., high temporal dispersion), there are few opportunities
for buffering and thus for reducing server retransmission.
Though limited, the impact of this reduction outweighs that
of a more spatially dispersed server workload, yielding mod-
est bandwidth savings. As N increases and more data is
buffered, the impact of avoiding data retransmission domi-
nates, and bandwidth savings increase. After a certain value
of N , the impact of increasing spatial dispersion starts to
dominate, and bandwidth savings start to decrease3. In fact,
for very high request rates, our optimizations may require
more average server bandwidth than Bandwidth Skimming.
For LOC, in contrast, the impact of increasing spatial dis-
persion dominates as N increases, since buffer content does
not depend on N , and bandwidth savings steadily decrease.

The request rate at which each optimization reaches max-
imum bandwidth savings depends primarily on the workload
spatial dispersion. For HI and MI workloads (Figures 4(a-
b)), significant savings are provided for up to high request
rates. For LI workloads (Figure 4(c)), fragmentation hurts
server bandwidth requirements even for small values of N .

In general, SP provides the best improvements for rela-
tively high request rates (N > 100) and for workloads with
a large number of requests per session. LOC provides the
greatest savings for low request rates (discussed above), and
for workloads with many requests per session and frequent
jump backwards. In contrast, KMB provides best results
for intermediate request rates (10 < N < 100), showing
a fast degenerative behavior for higher rates. Since KMB
buffers data gathered during unsuccessful merges, buffered
segments may be far from each other, increasing buffer and
request fragmentation. The design of buffer management
strategies to reduce fragmentation is left for future work.

Finally, the reasons for the very modest savings (if any)
provided by PMT are twofold. First, it operates only on
streams received by a single client. Second, changing the
merging structure is beneficial in some scenarios but may be
detrimental if stream merges that would be otherwise suc-

3Bandwidth savings for SP decrease for values of N larger
than those shown in Figure 4(a).
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Figure 6: Request Fragmentation under KMB
(HI workload, N=66, unlimited buffers).

cessful, fail in the new merging structure. We experimented
with a number of protocol variants based on changing the
merging structure, and none was cost-effective.

In summary, KMB, LOC and SP provide great bandwith
savings, each for different ranges of request rates. Further-
more, the most significant scalability improvements are ob-
tained exactly for the workloads Bandwidth Skimming needs
the most (i.e., very interactive workloads). The maximum
bandwidth savings, provided by SP for the HI workload in
Figure 4(a), is 44%. Since user requests in such workloads
are already very spatially dispersed, the impact of further
increasing spatial dispersion is of little relevance. Moreover,
HI workloads typically have more requests per session than
other profiles, favoring SP (as well as LOC).

Next, we analyze the impact of constrained client buffers.
Figure 5 shows average bandwidth savings for LOC, SP and
KMB for the same HI workload, N=66, and varying buffer
sizes, expressed as fractions of the media size. The curves
for SP and KMB show diminishing returns for large buffers.
For buffers constrained to 25% (40%) of media size, KMB
(SP) provides most of the benefits obtained with unlimited
buffers. In contrast, LOC can always benefit from larger
buffers, as long as there are a large number of requests and
frequent jump backwards within typical user sessions.

−10

 0

 10

 20

 30

 40

 50

 60

 1  10  100  1000A
vg

 S
er

ve
r 

B
W

 S
av

in
gs

 (
%

)

Request Rate (N)

HI
MI
LI

(a) Unlimited Client Buffers.

−20
−10

 0
 10
 20
 30
 40
 50
 60

 0  20  40  60  80  100A
vg

 S
er

ve
r 

B
W

 S
av

in
gs

 (
%

)
Buffer Size (% Media Size)

N=8
N=66

N=492

(b) HI Workload.

Figure 7: Average Server Bandwidth Savings for
Hybrid Protocol over Bandwidth Skimming.

In order to illustrate the phenomenon of request fragmen-
tation, Figure 6 shows an extract of the HI workload in Fig-
ure 4(a), N=66 and unlimited buffer. Figure 6(a) shows the
requests made by the users, whereas Figure 6(b) shows the
requests that are sent to the server under KMB. The server
workload contains a larger number of tiny and spatially dis-
persed requests, which are, on average, only 5% of the av-
erage user-requested segment size. Note that fragmentation
is a result of client buffering in general, and may impact,
to some extent, any protocol that relies on such strategy.
However, depending on how buffer space is managed, some
protocols are more heavily penalized. Moreover, fragmenta-
tion increases the synchronization required between server
and client to handle the larger number of requests. The ex-
tra cost may be justified if bandwidth savings are significant
(e.g., KMB for intermediate request rates). Otherwise, an
effort has to be made to reduce request fragmentation.

5.3 Combining Multiple Optimizations
This section evaluates a hybrid strategy that combines the

efforts of our best optimizations, SP, LOC and KMB, pro-
viding a unified solution that reduces server bandwidth for
a larger set of configurations than any single optimization.
Figure 7(a) shows average bandwidth savings for the hybrid
protocol, typical HI, MI and LI workloads, and unlimited
buffers. The results are envelopes of the curves for each
optimization over a range of request rates (see Figures 4(a-



c)). Maximum savings are 54% and 33% for the HI and the
MI workload, respectively. However, for large request rates,
the degenerative behavior of KMB outweighs the benefits
from SP, decreasing bandwidth savings. This result moti-
vates the design of an online adaptive strategy that monitors
the workload and reacts to changes in request rate and in
interactive patterns by dynamically selecting the most cost-
effective optimization(s) for each media. The design of such
protocol, left for future work, could greatly benefit from the
comprehensive evaluation provided in this paper.

For constrained buffers, contention for buffer space among
the protocols is solved by prioritizing segments that are
closer (backwards or forwards) to the current playback po-
sition. Figure 7(b) shows average server bandwidth savings
as a function of buffer size, for the HI workload and varying
request rates. Diminishing returns are not as clear for the
hybrid protocol. Nevertheless, savings of as much as 29%
are achieved with a buffer of only 25% of the media size.

6. CLIENT AND NETWORK BANDWIDTH
REQUIREMENTS

Recall that the SP optimization requires the client to lis-
ten to up to two streams during silent periods. This reduces
the available client bandwidth, and may require additional
network bandwidth if a client prefetches from streams that
would not be sent to its network region otherwise. This sec-
tion discusses the impact of SP on client (Section 6.1) and
network (Section 6.2) bandwidth requirements.

6.1 Client Bandwidth
This section compares the SP optimization, referred to as

SP-Aggressive, with a protocol variant called SP-Conserva-
tive, which requires the client to listen to only one (the clos-
est) stream during silent periods. Figure 8(a) shows av-
erage server bandwidth savings over Bandwidth Skimming
for both variants, for a typical HI workload and unlimited
buffers. Qualitative results hold for other profiles.

The pay-off for reducing the required client bandwidth by
50% is an increase of as much as 29% on the average re-
quired server bandwidth. Whereas SP-Aggressive provides
bandwidth savings of as much as 44%, savings provided by
SP-Conservative are limited to 30%. For buffers constrained
to 25% (50%) of media size, SP-Conservative reduces av-
erage server bandwidth in up to 16% (24%), whereas SP-
Aggressive provides savings of up to 19% (31%).

6.2 Network Bandwidth
This section presents a preliminary analysis of the pri-

mary trade-offs involving the server and network bandwidth
required by SP. A thorough analysis is left for future work.
Although we show results only for unlimited buffers, the
qualitative conclusions hold for constrained buffers as well.

We use a canonical topology with a server node connected
to k client sites, each representing a group of nearby users.
Server and client sites are connected through a single shared
link, within the server network, plus k disjoint links, each
serving a distinct site. Thus, a single link is used to represent
the distribution tree connecting the shared link end-point
(i.e., a border router) to users within the same site. Request
rate N is assumed to be homogeneously distributed among
all client sites. We argue that this simple topology captures,
to a first order, the dominant factors that impact network
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Figure 8: Bandwidth Savings of Silent Prefetch over
Bandwidth Skimming (unlimited buffers).

bandwidth requirements. Moreover, the selected topology
and load distribution are the worst case with respect to how
network bandwidth scales with the number of clients [22].

Figure 8(b) shows average network bandwidth savings for
SP-Aggressive and SP-Conservative, for a topology with
k=5 sites, a typical MI workload, and the HI workload of
Figure 8(a). The average required network bandwidth, dom-
inated by the bandwidth over the k disjoint links, is calcu-
lated as the sum of the average number of streams traversing
each of these links. It depends on: (a) the number of server
streams traversing the network, and (b) the number of net-
work streams created from the sharing by multiple sites.

For the HI workload, the great server bandwidth savings
(Figure 8(a)) outweight the network bandwidth increase due
to inter-site stream sharing. For k=5, SP-Aggressive de-
creases the average network bandwidth required by Band-
width Skimming in up to 37%. Greater (lower) savings are
achieved with smaller (larger) values of k. For the same
workload and N=500, SP-Aggressive provides network band-
width savings of as much as 41% for k=2, and 17% for k=10.
Network bandwidth savings are significant for large values
of k as long as the per-site request rate is high enough to
enable a significant number of intra-site stream merges.

For the MI (and LI) workload, the increase in the number
of network streams dominates the modest server bandwidth
savings. SP-Aggressive requires as much as 9% more aver-
age network bandwidth than Bandwidth Skimming. As N



increases, all three protocols experience frequent inter-site
stream sharing, and the difference between them decreases.

We next evaluate average bandwidth requirements if silent
prefetching is constrained to streams sent to the same site.
We call this strategy Network-Aware SP. Note that the mer-
ges performed during active periods are still network-obli-
vious, as constraining such merges has little impact on net-
work bandwidth [22]. Figure 8(b) shows results for Network-
Aware SP-Aggressive, for the same MI workload, and k=5.
In contrast to the network-oblivious SP-Aggressive, network-
awareness provides limited network bandwidth savings (up
to 4%), at the cost of a modest 5% maximum server band-
width savings (ommitted). Thus, for workloads with low in-
teractivity, network-awareness provides only marginal gains
over Bandwidth Skimming. For more interactive workloads
(omitted), on the other hand, network and server bandwidth
savings are as high as 35% and 29%, respectively.

7. CONCLUSIONS AND FUTURE WORK
This paper investigates new strategies for scalable stream-

ing to interactive users. We devise a framework that helps
understanding which interactive workload aspects affect the
scalability of classes of streaming protocols, and use it to
build a set of realistic workloads, and to guide the eval-
uation of the current Bandwidth Skimming and Patching
protocols, as well as five new protocol optimizations.

Our results show that it is possible to greatly improve
the scalability of Bandwidth Skimming, the best of the two
current protocols, for varying interactive workloads and re-
quest rates. Moreover, the greatest benefits are obtained for
very interactive workloads, for which the original protocol
fails to scale well. Our best optimization reduces average
server bandwidth requirements in up to 54%, for unlimited
client buffers, and 29%, for buffers constrained to 25% of
media size. We uncover the impact of buffering on request
fragmentation and protocol scalability, and provide initial
results on client and network bandwidth trade-offs.

Future work includes designing efficient buffer manage-
ment policies to reduce fragmentation, as well as new proto-
cols, including an adaptive strategy that dynamically applies
alternative optimizations based on the current workload.
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