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Abstract. Prioritizing tasks in Hard-Real-Time Systems is a problem belonging to NP-hard
class. Scheduling and resource allocation in real-time systems are difficult problems due to the 
timing constraints of the tasks involved. Scheduling policies in hard real-time systems need to 
ensure that tasks will meet their deadlines under all circumstances, even in the presence of 
faults.

This work presents techniques to enhance the fault tolerance capability of multiprocessor 
hard real-time systems, in the presence of transient and permanent faults. As a special case, in 
the present paper we propose a new method to obtain a high level of fault-tolerance in the 
CAN bus by incorporating time redundancy and task schedulability tests, which may be used 
concurrently with processor redundancy and any other hardware redundancy. 

1 Introduction

Real-time systems are systems that depend on the result of computation as well on the 
deadline by which this result is reached. Real-time systems include sensors and actuators; task 
deadlines are typically derived from the required responsiveness of the sensors and actuators, which 
are monitored and controlled by the system. Examples of such systems include signal processing, 
process control, flight control, telecommunication, automotive and life-support medical systems. 
Hard real-time systems (HRTSs) have stringent timing constraints, and the consequence of missing 
task deadlines may be catastrophic.

Scheduling and resource allocation in real-time systems are difficult problems due to the timing 
constraints of the tasks involved. Fault tolerance is an especially vital requirement for HRTS
development. Scheduling policies in hard real-time systems need to ensure that tasks will meet their
deadlines under all circumstances, even in the presence of transient or permanent faults. The time 
requirements and fault model depend on a high knowledge of the application and its environment.

This work presents an overview, extension and application of techniques to enhance the fault 
tolerance capability of multiprocessor hard real-time systems based on the CAN protocol. We 
introduce extensions to the CAN (Controller Area Network) bus communication protocol and apply 
a set of techniques to improve its reliability. A well-known problem of the CAN bus is on delivering 
low priority messages, which may be compromised if the bus is flooded with higher priority
messages. In this work, we use task schedulability and time redundancy to optimize fault-tolerance
requisites for multiprocessor hard real-time systems. In this scenario, a new technique is proposed to 
enhance the fault-tolerance capability of the CAN protocol by incorporating time redundancy, which 
can be used in conjunction with hardware and software redundancy to tolerate faults in hard real-
time systems.



This work was developed over the CAN protocol mainly because of it is present in more than 
90% of microcontrollers and DSPs (digital signal processors) incorporating real-time protocols. A
comparison of real-time fault-tolerant communication protocols is also presented, highlighting the 
advantages of the proposed method. 

This paper is organized in the following form. In Section 2 related work including real-time
protocols with fault tolerance requisites are presented. In Section 3 the new approach to improve 
reliability in the CAN bus is shown. Finally the results are briefly analyzed and some conclusions are 
presented.

2 Related Work

One of the essential services provided by real-time fault-tolerant distributed architecture is 
communication of information from one distributed component to another; a communication bus is 
one of its principal components, and the protocols used for control and communication on the bus 
are among its principal mechanisms. In truth, these architectures are the safety-critical core of the 
applications built above them, and the choice of services to provide to those applications, and the 
mechanisms of their implementation, are issues of major importance in the construction and
certification of safety critical embedded systems [12][13]. In a distributed hard real-time system, 
communication between tasks on different processors must occur in bounded time. 

Redundant busses are often used in safety-critical environments to handle device faults. 
Besides fault tolerance, many applications require real-time guarantees such as deterministic message 
latency. There are various protocols for such purposes, with different complexities, which are used 
by the avionics industry, such as Airbus and Boeing, and automobile industry, such BMW and Audi. 
Some of the more representative real-time communication protocols today are TTP/C (Time-
Triggered Protocol) [17], FlexRay [6], CAN (Controller Area Network) [4] and TTCAN (Time-
Triggered CAN) [1][3][11].

Some of the busses considered here are primarily time triggered which means that all
activities involving the bus, and often those involving components attached to the bus, are driven by 
the passage of time. In event-triggered busses, the activities are driven by the occurrence of events. 
A time-triggered system interacts with the world according to an internal schedule, whereas an
event-triggered system responds to stimuli.

The Time Triggered Architecture (TTA) was developed by Hermann Kopetz and colleagues 
at the Technical University of Vienna [7]. Commercial development of the architecture is being 
deployed for safety-critical applications in cars and for flight-critical functions in aircrafts. In a Time-
Triggered Architecture, the communication system decides autonomously and according to a static 
schedule when to transmit a message. 

FlexRay [6] is a new real-time protocol, not yet released to the public, being developed by a 
consortium of companies (BMW, Motorola, etc.) aiming to be more flexible than TTP/C. Although
used primarily for automotive applications, it is representative of state-of-the-art safety critical real-
time protocols. FlexRay introduces some dynamism through the combination of time-triggered and 
event-triggered operation. 

The controller area network (CAN) protocol [4] uses a serial multimaster communication 
where prioritized messages with up to eight bytes data length can be sent using an arbitration
protocol and an error-detection mechanism for a high level of data integrity. The CAN bus is ideal 
for applications operating in noisy and harsh environments, such as in the automotive and other 
industrial fields that require reliable communication. 



A new development in CAN technology is the TTCAN protocol [1][3][11], a higher-layer
protocol above the unchanged standard CAN protocol that synchronizes the communication
schedules of all CAN nodes in a network and that provides a global system time, avoiding the 
transmission collisions commonly found in standard CAN networks. In TTCAN, all the message 
instances are transmitted only on previously allocated time-slots, just like the TTP/C protocol, 
without competing with other messages for the bus. 

2.1 Rate Monotonic Scheduling applied to the CAN bus

The dynamic scheduling algorithm used by the CAN protocol is virtually identical to scheduling 
algorithms commonly used in real-time systems to schedule computation on processors [14]. In fact, 
the analysis of the timing behavior of such systems can be applied almost without change to the 
problem of determining the worst-case latency of a given message queued for transmission on CAN. 

Tindell et. al. [15] developed a CAN analysis based on RMA, showing how to find the 
response time for messages being transmitted in a CAN bus. 

As defined by Tindell, the worst-case response time is composed of two delays: the queuing 
delay and the transmission delay. The queuing delay is the longest time that a message can be queued 
in a station and be delayed because other higher and lower priority messages are being sent on the 
bus, which are known as interference and blocking time respectively. The transmission delay is the 
time taken to actually send the message on the bus. 

A model for error handling must also be included, once it is important in a fault tolerant
scenario. In a CAN bus, an error detected by either the sender of a message or a receiver station is 
signaled to the sender station, which must re-transmit that message. The costs of error handling are 
given as the most probable bound on the overheads due to errors in an interval of duration t, and it 
includes the cost of re-transmission. An extended analysis can also be found in [15] which includes
also remote transmission request messages.

3 Improving Reliability in a CAN bus

A perceived problem with the CAN protocol for use in distributed real-time control
applications is the inability to bind the response times of messages. While CAN is very good at 
transmitting the most urgent data, it is unable to provide guarantees that deadlines are met for less 
urgent data [7] [8] [9], once the most urgent data may flood the bus avoiding the transmission of the 
less urgent data. 

In a CAN bus, the delivery of low priority messages may be compromised if the bus is 
flooded with higher priority messages. In this sense, we need to guarantee that an overload in the bus 
will not occur and a deterministic package response time can be achieved. 

3.1 Applying Fault tolerance requisites to a CAN bus

Due to the critical nature of the tasks in hard real-time systems, it is essential that faults be 
tolerated. Transient faults in real-time systems are generally tolerated using time redundancy, which 
involves the re-execution of any task running during the occurrence of a transient fault [5].

Ghosh [2] showed a recovery scheme for single and multiple faults that ensures the re-
execution of any task after a fault has been detected. Once the dynamic scheduling algorithm used by 
the CAN protocol is virtually identical to scheduling algorithms commonly used in real-time systems 



to schedule tasks, this recovery scheme may be also used to ensure the re-transmission of any 
message in a CAN bus

The general approach to fault tolerance is to maintain enough slack (backup time) in the 
schedule so that any message instance can be re-transmitted if a fault occurs during its transmission. 
If no faults occur, messages are transmitted just following the usual RMS scheme and the slack is not 
used. If a fault occurs in the transmission process of a message, a recovery scheme is used to re-
transmit that message. The ratio of slack S available over an interval of time L is thus constant and 
can be imagined to be the utilization of a backup message B. If the backup utilization is UB, then the 

slack available during an interval L, denoted by BL, is BL=UBL.

In order to apply this approach the following conditions must be satisfied: 

[Sl]: There should be sufficient slack for every instance of each message to be re-transmitted.
That is, the slack between kTi and (k + 1) Ti should be at least Ci for any value of k and i, what 
ensures the availability of sufficient slack for a message to be re-transmitted.

[S2]: When any instance of τi finishes executing, all the slack available within its period (at 
least Ci if [Sl] holds) should be available for the re-transmission of τi. This slack can be used after a 
message finishes transmitting to re-transmit that message before its deadline, if a fault is detected.

[S3]: When a message re-transmits, it should not cause any other message transmission to 
miss its deadline, allowing all tasks to meet their deadlines even when a high priority task needs to re-
execute.

If these three conditions are met, then it is possible to re-transmit a faulty message and meet its 
deadline. However, a recovery scheme must define also how the slack should be used and a very 
straightforward scheme consists on the faulty message simply being re-transmitted at its own priority. 

This scheme is a general approach to distribute slack in the schedule, and it can be applied to 
any non-fault-tolerant scheduling scheme for preemptive, periodic tasks where the RMS assumptions 
hold. Any transmission time Ci in the non-fault-tolerant scheme can be split into two parts for the 
fault-tolerant scheme: a new transmission time Ci’ = Ci(l - UB) (where UB is the backup utilization) 
and a slack equal to CiUB. To guarantee the re-transmission of a message before its deadline, its 
critical instance is considered, which is defined as the time at which the message’s transmission is 
maximized - it happens when the message starts its transmission process simultaneously with all 
higher priority messages [10]. The total slack available for any message at its critical instance is equal 
to the total slack available within a period boundary, which is defined as the beginning of a period.

Ghosh showed also that, by splitting up each transmission time Ci into a new transmission time 
Ci’ and slack, as described above, the utilization of each task τi is reduced to Ui(l- UB), and thus the 
following general fault tolerance boundary for an RMS (UG-FT-RMS) is obtained: 

UG-FT-RMS = n(21/n - 1)(1 - UB) = ULL-RMS(l- UB) (1)

The above equation is a general one applicable to an RMS for any value of UB. If
UB=max{Ui}, i = 1,..., n, then any message transmission in the system can tolerate a single fault. 
Any number of faults can be tolerated if [S1] holds. 

Multiple faults within two consecutive period boundaries are also guaranteed to be tolerated 
using the scheme described above. If several backups are provided in the system, and the total
backup utilization is UBT, then a general boundary for the message set can be derived by replacing 
UB with UBT in UG-FT-RMS; that is, the new boundary is ULL-RMS(l- UBT).



3.2 Limiting the maximum transfer rate of the CAN bus

Considering the CAN protocol, the absence of a message is identified by the CPUs connected 
to the bus as a fault. In this case, a failure model is applied, implying in the re-transmission of the 
message that failed in its transmission or even in the execution of an alternative action such as the 
reconfiguration of the bus. 

The RMS scheme can be applied to the CAN bus since the following premises can be 
assumed:

• The messages are independent, which means in other words that they are asynchronous to 
each other.

• The messages will have their priority ascertained by RMA.
• Each message has a maximum transmission time and deterministic period. 

The independency of the messages is guaranteed by the fact that we are dealing with periodic 
control messages. We must also guarantee that [S1], [S2] and [S3] are satisfied, as presented in 
Section 3.1. The maximum transmission time is, in the worst-case, the worst-case transmission time 
defined by Tindell ET. al in [14], and will help us define the backup slack size and ensure the 
availability of sufficient slack for a message to be re-transmitted. This slack can be used after a 
message finishes transmitting to re-transmit that message before its deadline, if a fault is detected. 
This means that [S1] and [S2] hold for the CAN protocol. 

The third condition [S3] may not hold for a CAN bus, once a higher priority message re-
transmission may prevent the transmission of a lower priority message, causing the latest to miss its 
deadline. Thus, to guarantee that a CAN bus can tolerate faults, we define a maximum transmission
rate for each message instance; instead of pre-defining a time-driven slot as is the main idea of 
TTP/C. With this idea in mind, we will not limit a node transmission to its slot, but allow it to transmit 
at any time if its transmission frequency allows. We will call this extension of the CAN bus as 
RMCAN, which means Rate Monotonic CAN.

From the protocol point of view, the retransmission of a finite number of messages in the case 
of a transmission failure may not compromise the bus bandwidth and the RMS may be applied 
deterministically.

This way, any message corruption or further errors indicate that a fault occurred, and the 
message must be re-transmitted and also meet its deadline. Moreover, if the fault persists, a failure is 
detected and an alternative process must be executed in another processor to prevent a global 
failure.

The following example shows how RMCAN can be used to determine whether a message can 
be re-transmitted before its deadline with guarantees in a CAN bus. Consider a set of 10 processors 
- N = 10 - sending 5 periodic messages with utilizations Ui = 1% for each message i. Each 
processor is also limited to a maximum data transmission volume of 10% of the bus bandwidth. 
Once this limit is reached, the processor that is sending messages stops sending messages and higher 
layers of the processor that should be receiving the messages will tolerate the fault taking the 
appropriate action in the context of the specific application.

If we assume that a message fault needs to be tolerated and re-transmitted up to 5 times, then 
UB = 5%. Equation (2) gives us a bound of 66% while the sum of utilizations of the task is 50%. 

100 (21/100 – 1) * (1 – 0,05) = 0,66 (2)



Since Σ Ui < UG-FT-RMS, the messages are schedulable.

4 Comparison of Real-Time Fault-Tolerant Communication Protocols –
advantages of the proposed method

This comparison does not reiterate the common design decisions, but focuses on the
differences between TTP/C, CAN, TTCAN and FlexRay protocols and shows the advantages of 
the adaptation proposed over the CAN protocol in this work (RMCAN).

From the buses considered just above, only TTP/C is solely time-triggered while the CAN bus 
is event-triggered. TTCAN and FlexRay combine time-triggered and event-triggered operation
aiming to be more flexible than TTP/C and safer than CAN protocol. This time-triggered versus 
event-triggered decision is a fundamental design choice that influences many aspects of their
architectures and mechanisms. The mechanism adopted by each protocol to resolve transmission 
concurrency between nodes is decisive to indicate if collisions or concurrency occur during runtime. 

Analyzing the performance of these protocols, we may see that latency is constant and known 
at design time for TTP/C, while it may increase with load in a CAN bus. The main problem with the 
CAN bus is that it cannot prevent an overload of the communication system, which may cause a 
disastrous result when the delivery of low priority messages is prejudiced by higher priority messages 
re-transmission. RMCAN solves this problem by limiting the transmission frequency of a node to a 
maximum value. In this case, the worst-case and latency are precisely known. 

In this sense, little is known about the FlexRay protocol, which has not been released yet. All 
that is known is that FlexRay provides no services to its applications beyond best efforts message 
delivery. A never give up strategy inside FlexRay leaves the control of the communication system 
with the application, and latency will be constant and precisely known at design time for the TDMA 
window.

Resuming, we may say that TTP/C provides an off-line communication design yielding
guaranteed latency for all messages in the system, but presents low flexibility once bandwidth is 
distributed at design time by assigning frames of specific length to each node. In a CAN bus, 
otherwise, priorities are distributed at design time by assigning unique identifiers and a full control by 
the application over the bandwidth distribution. The CAN protocol is highly flexible and widely 
available, although some extensions must be done to guarantee a reliable mechanism to build fault-
tolerant safe-critical systems. TTCAN is a compromise and represents the necessary evolution of 
CAN for dealing with higher loads on the bus. However, synchronizing nodes is not a simple task, 
and brings a new complexity to the CAN bus. RMCAN was developed to be as efficient as 
TTCAN without incorporating extra hardware or difficulties. Both protocols can be implemented 
using a regular CAN microcontroller, although for TTCAN it is also necessary an extra hardware for 
the time-triggered portion of the protocol. Synchronizing nodes is not a simple task, and brings a new 
complexity to the CAN bus in TTCAN. Implementing RMCAN is much easier, and does not 
require any extra hardware. The transmission frequency of each message set can be controlled 
through software. 

FlexRay can be considered the state-of-art in the real-time fault-tolerant communication
protocols area, although it has not been released yet. It promises a higher bit rate than TTCAN an 
increase in flexibility when compared to TTP/C. 

The use of the CAN protocol in the development of applications is favored by the high
availability of microcontrollers incorporating the bus. Today, the biggest advantages of CAN



compared to other networks are the costs and the price/performance ratio. The enhancements 
proposed by TTCAN and RMCAN are examples of how CAN problems can be circumvented and 
its spread presence in the market can be explored. 

TTP/C CAN TTCAN RMCAN FlexRay
Media access 
strategy

Time-triggered Event-triggered Time and Event-
triggered

Event-triggered and 
transmission
frequency directed

Time and Event-
triggered

Dynamic
bandwidth
sharing among 
nodes

No Yes Yes Yes Yes

Market
presence

< 1% > 99% May explore the CAN protocol market 
presence

Not available

Data Efficiency 
vs. Latency

Constant and 
known at design 
time

Increases with 
load

Constant Constant Constant and 
known at design 
time

Response Time Deterministic Non-
deterministic

Deterministic Deterministic Deterministic

Table 1 – Comparison between TTP/C, CAN, TTCAN, RMCAN and FlexRay protocols

5 Conclusions

Tasks in real-time systems must meet their deadlines under all circumstances, even in the 
presence of transient or permanent faults. This work has shown that time redundancy through
scheduling is a powerful tool to deal with faults in real-time systems. The harmonious integration of 
the available techniques enhance the fault tolerance capability of multiprocessor hard real-time
systems.

Relating to real-time communication protocols, the time-triggered and event-triggered
approaches find favor in different application areas, and each has strong advocates [13]. The CAN 
protocol may have a non-deterministic response time for an arbitrary low priority message.
Researchers sometimes say that the CAN protocol is more appropriate for soft real-time systems 
(flexible requirements), while appropriate protocols for hard real-time systems include TTP/C. 
RMCAN, the extension proposed to the CAN protocol, shows that it is possible to bound the 
message transmission time, thus making possible its use on HRTSs. 

In RMCAN there is a limit on the node transmission rate, making the transmission time 
deterministic, even for low priority messages. We do not limit a node transmission to its slot, but 
allow it to transmit at any time if its transmission frequency allows. This way one can guarantee that a 
message will arrive at its deadline or it will not arrive anymore, in which case a backup action is 
taken.

One advantage of the CAN protocol over time-triggered protocols is the extensibility aspect. 
New nodes can be added to the bus, while in the TTP/C protocol, for example, a slot for a new 
node has to be reserved at design time. Other advantages are the high availability of microcontrollers 
incorporating the CAN bus, and the price/performance ratio. The enhancements proposed to the 
CAN protocol show that its reliability can be increased and its spread presence in the market can be 
further explored.

Another aspect in multiprocessor real-time systems relates to the interdependence of task 
execution time and message transmission time. The release jitter of a receiver task depends on the 



arrival time of a message, which in turn depends on the interference from higher priority messages, 
which in turn depends on the release jitter of the sender tasks. A future work may be the analysis of 
the relationship of these times, considering worst-case situations.
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