
p � �

URL� http���www�elsevier�nl�locate�entcs�volume���html �� pages

Model Checking Semi�Continuous Time Models
Using BDDs

S�ergio Campos� a M�arcio Teixeira� a Marius Minea� b

Andreas Kuehlmann� c Edmund Clarke b

a Univ� Federal de Minas Gerais� Dept� de Ci�encia da Computa�c�ao� Brasil

fscampos�mtog�dcc�ufmg�br
b Carnegie Mellon University� School of Computer Science� USA

fmarius�emcg�cs�cmu�edu
c IBM T�J� Watson Research Center� USA

kuehl�watson�ibm�com

Abstract

The veri�cation of timed systems is extremely important� but also extremely di��

cult� Several methods have been proposed to assist in this task� including extensions

to symbolic model checking� One possible use of model checking to analyze timed

systems is by modeling passage of time as the number of taken transitions and ap�

plying quantitative algorithms to determine the timing parameters of the system�

The advantage of this method is its simplicity and e�ciency� In this paper we

extend this technique in two ways� First� we present new quantitative algorithms

that are more e�cient than their predecessors� The new algorithms determine the

number of occurrences of events in all paths between a set of starting states and a

set of �nal states� We then use these algorithms to introduce a new model of time�

in which the passage of time is dissociated from the occurrence of events� With this

new model it is possible to verify systems that were previously thought to require

dense time models� We use the new method to verify two such examples previously

analyzed by the HyTech tool� a steam boiler example and a fuel injection controller�

� Introduction

Computers are frequently used in applications where failures can have severe

consequences� such as in the control of industrial machinery or transportation

equipment� In these applications� the computer system must not only produce

the correct result� but must do so in timely fashion� For example� a command

to apply the brakes of a car or to turn an airplane to a certain direction cannot

be late� otherwise an accident may occur� Such failures cannot be tolerated�

making the correctness of these systems an extremely important issue�

c����� Published by Elsevier Science B� V�

75

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Campos et al�

However� veri�cation of such systems is a very complex problem� made

even harder by timing requirements� Several methods have been proposed

to accomplish this task� One method that has obtained signi�cant success is

model checking ������ In this technique the system being veri�ed is modeled as

a state�transition graph and properties of the system are expressed as temporal

logic formulas� The veri�cation procedure consists of a search on the state

space of the graph to determine which states satisfy the properties�

Original model checkers were not designed to verify timing characteristics�

Several extensions have been proposed to express and verify such properties�

The �rst and simplest is to associate each transition with the passage of one

time unit and to determine elapsed time by counting the number of transitions

between events� This technique assumes a discrete time model� The main ad�

vantage is its simplicity and extremely e�ciently implementation� particularly

in BDD�based symbolic model checkers such as SMV �	
� or Verus ����

Another approach is to use a continuous time model� in which events can

happen at any moment in the dense time domain� e�g�� timed automata �	�	���

Since in this case the state space is inherently in�nite� model checking entails

constructing a �nite equivalent model� the complexity of which can be quite

high� These models� as well as the veri�cation algorithms are considerably

more complex than in the discrete time case� Initial tools were unable to

handle models with more than hundreds or thousands of states� Current tools

are signi�cantly more e�cient �		�	�	��� but verifying timed automata is still

much more expensive than the veri�cation of discrete time models�

However� discrete time models have one major disadvantage over contin�

uous time models� their limitation in expressing the semantics of event se�

quences that happen in short periods of time� For example if the occurrence

of an event a triggers an alarm b and an immediate response c we can model

these events as happening simultaneously or taking at least two time units

to occur� This may not correspond to reality� however� It may be the case

that after event a has occurred but before alarm b another event d occurs

that would change response c� But if a� b and c happen at the same time this

possibility would not be present� On the other hand� if it takes 	 time unit

between a and b it would not be possible for d to occur between a and b� For

this reason discrete time models cannot be used in some applications where

accuracy is essential�

The proposed method overcomes this problem by using zero�length transi�

tions to model the occurrences of events without time passing� The passage

of time then occurs in discrete steps using unit�length transitions� The advan�

tage of this new model is that it removes the limitation on event orderings for

the discrete time model� For example� it is now possible to let events a� b� c

and d described previously occur in time zero preserving their order� and only

let time elapse after all events have occurred� We argue that this enables

the veri�cation of many systems that have been previously thought to require

dense time models�

76

Campos et al�

In order to determine the time between events in the semi�continuous time

model we use quantitative timing analysis as described in �
������ Of partic�

ular interest are the condition counting algorithms that count the minimum

and maximum number of occurrences of a speci�c event in a given set of in�

tervals� In this work these algorithms are used to count the minimum and

maximum number of unit transitions on paths of interest� computing the time

elapsed between events� We propose new condition counting algorithms that

are signi�cantly more e�cient than the previous ones� These algorithms allow

veri�cation to be done as e�ciently as for the simple discrete time case� They

are similar to the �xpoint computation used in model checking for untimed

systems� and as such can be implemented e�ciently using BDDs�

To demonstrate the expressive power and e�ciency of the method we have

veri�ed two examples of systems in which high accuracy is necessary to achieve

the correct results� The �rst is the steam boiler example described in �	��� This

example� while small� demonstrates that the proposed model can be used to

verify systems which are not usually considered in the realms of discrete time�

We have then veri�ed an automotive engine controller developed for Magneti�

Marelli that has been previously veri�ed by HyTech �	��� We have modeled

the controller that identi�es that the driver has released the accelerator and

regulates the reduction of fuel injection� This identi�cation is a complex time

critical function of the position of several sensors� If the timing of the events

that take place during its execution is wrong� the algorithm may not converge

and the controller can malfunction� We have veri�ed both examples using

Verus� demonstrating the e�ectiveness of the proposed method�

� Related Work

A precursor to the presented analysis method has been developed in the real�

time model checker Verus ���� This tool implements quantitative timing analy�

sis algorithms that determine the timing characteristics of a system by count�

ing the time between events or the number of occurrences of events in given

intervals� The method has been used to verify large and complex timed sys�

tems such as an aircraft controller �
�� a robotics controller �� and the PCI

local bus ���� However� the condition counting algorithms used in that context

require the augmentation of the state space with a additional integer time vari�

able which added a signi�cant overhead to veri�cation� The new algorithms

do not require this construct and are e�ciently implemented using BDDs�

The occurrence of events without the passage of time has been discussed

in ���� But that work does not consider a symbolic implementation using BDDs

and is not as e�cient� It also does not use quantitative analysis algorithms

and cannot generate the same type of information as the method proposed�

A signi�cant body of research exists on continuous�time models� One of

the most widely used models are the timed automata �	�� which add real�valued

clock variables to represent time� Clocks evolve at the same rate� modeling

77

Campos et al�

passage of time� and formulas can refer to the value of the clocks to express

timing properties� Veri�cation is then performed on a �nite�state quotient

model� such as the region graph �	� or the zone automaton �	��� However�

the expressive accuracy comes with a signi�cant increase in complexity� and a

signi�cant e�ort in the development of continuous�time model checkers �	��	�

has been devoted to dealing with the state explosion problem�

The expressiveness and e�ciency trade�o�s between discrete and continu�

ous time raise the question when a discrete�time approximation is su�cient to

model all continuous�time behaviors of a system� This problem is analyzed�

e�g�� in �	��� This work introduces the notion of digitizability and proves that

such a reduction is possible for timed transition systems� for veri�cation of

properties such as time�bounded invariance and time�bounded response� More

recent work ��� shows that a reduction to discrete time can be performed for

acyclic combinational circuits� but not for all cyclic ones� These can only be

reduced under the constraint that no strict inequality is used in their design�

� Condition Counting Algorithms

Our method relies on the ability to count some transitions on a path but not

necessarily all of them� In order to accomplish this� we use the algorithms

described in this section� The original algorithms used in our method to

verify real�time systems determine the length of a path leading from a set of

starting states to a set of �nal states �
����� But to verify semi�continuous

time models we also need to compute the minimum and maximum number

of times a given condition holds on any path from start to �nal� In �
� we

have presented algorithms that compute this information� However� these

algorithms required an augmentation of the state space with a counter to store

intermediate results� This made the algorithms very expensive in some cases�

The algorithms described in this section do not su�er from this limitation�

We require that every state of the model has at least one outgoing tran�

sition� We also assume that any path beginning in start reaches a state in

�nal in a �nite number of steps� This is necessary so that the minimum and

maximum are well�de�ned� It can be checked using the maximum algorithm

described in �
�� We also consider only reachable states� which can be achieved

by intersecting start with the set of reachable states computed a priori�

Minimum Condition Counting

The minimum condition count algorithm computes the minimum number of

states satisfying a given condition cond over all paths that start in a state in

start and end in a state in �nal� Any paths starting in start� but which do not

reach �nal in a �nite number of steps are excluded from this computation� In

particular� if no path from start ever reaches �nal� the algorithm will return

the special value NOPATH�

78

Campos et al�

The algorithm looks for paths beginning in start that have an increasing

number of occurrences of cond� Each iteration consists of two phases� The �rst

is a forward traversal through states that do not satisfy cond� This traversal

is performed until all states �not satisfying cond� reachable from the current

frontier are found� If �nal has not been reached yet� the frontier is expanded by

one step to states that satisfy cond and the condition counter is incremented�

The algorithm iterates until �nal is found� or all reachable states are visited�

The algorithm must di�erentiate between states that do not satisfy cond

and those that do� and similarly� between transitions leading to these states�

We use subscripts � and 	 respectively for the two types of states and transi�

tions� For example� start� is the set of initial states that do not satisfy cond�

and start� is the set of initial states that satisfy cond�

start� � start � �cond start� � start � cond

Furthermore� if N�s� s�� is the transition relation� we denote by T��S� and

T��S� the set of transitions from a state in S that lead to states not satisfying

cond and to states satisfying cond� respectively�

T��S� � fs� j �s � S�N�s� s�� � s
� �� condg

T��S� � fs� j �s � S�N�s� s�� � s
� � condg

The argument about the correctness of the algorithm follows from invari�

ants stating that R� at the ith iteration contains the set of all states that can be

reached as endpoints of �nite intervals starting in start� have no state in �nal

�except perhaps the last one�� and having i or less states satisfying condition�

The proof can be found in the full version of the paper�

Maximum Condition Counting

The maximum condition count algorithm computes the maximum number of

states satisfying a given condition cond over all paths that begin in a state in

start and end in a state in �nal without previously traversing a state in �nal�

If there is a path beginning in start that goes through cond in�nitely often

without reaching �nal� the algorithm returns in�nity� The basic idea behind

the algorithm is to �nd paths with increasing condition count whose states

are all within ��nal� The condition count of the longest path satisfying this

condition and starting in start is the desired maximum�

Similarly to the mincount algorithm� we consider transitions into states

that satisfy cond and that do not satisfy cond separately� This algorithm�

however� performs a backward search� and uses the reverse image of the tran�

sition relation� In this case B��S
�� is the set of states satisfying neither cond

nor �nal that lead to a state in S
� in one step� Similarly� B��S

�� is the set

of states satisfying cond but not final that lead to a state in S
� in one step�

Note that �nal only appears implicitly in the algorithm� in the de�nitions of

B� and B��

B��S
�� � fs j �s� � S

�
�N�s� s�� � s �� final � s �� condg

B��S
�� � fs j �s� � S

�
�N�s� s�� � s �� final � s � condg

79

Campos et al�

proc mincount�start� cond� final�
i � �� R � �� R� � start��
do

do

if �R� � final �� �� return i�
R � R

��
R

� � T��R
�� � R

��
while �R� �� R��
R

� � T��R
�� �R

��
if �i � ��R� � R

� � start��
i � i� 	�

while �R� �� R��
return NOPATH�

proc maxcount�start� cond� final�
i � �� R� � cond�
do

R� � R
��

do

R � R
��

R
� � R

� �B��R
���

while �R� �� R��
if �R� � start � �� return i�
R

� � B��R
���

i � i� 	�
while �R� �� R���
return ��

Fig� �� Minimum and maximum condition count algorithms

Again� we argue the correctness of the algorithm using an invariant similar
to the previous one� It states that at the ith iteration R

� is the set of all states
that are the start of a �nite path which has no states in �nal �except possibly
the last one�� and which has i � 	 states that belong to cond� The proof can
be found in the full version of the paper�

� Semi�Continuous Time

The basic idea of the proposed method is to allow zero�length transitions
that model the occurrence of events without time passing� thus making the
occurrence of events independent of the passage of time� To allow zero�length
transitions we have created a special variable t in the model of the system
being veri�ed� Time passage is controlled by enabling unit�length transitions
only when t is true� and enabling zero�length transitions only when t is false�

Parallel composition of processes under the new model is de�ned as fol�
lows� Unit transitions have to occur synchronously� that is� all processes must

80

Campos et al�

execute a unit transition in order for time to elapse� Zero�length transitions�

on the other hand occur asynchronously� When a process performs a zero�

length transition all other processes are not executing� As a consequence of

this� zero�length transitions are always enabled� Unit transitions however� are

only enabled when there is at least one unit transition enabled in each process�

This parallel composition model satis�es one important invariant� passage of

time is identical in all processes�

A symbolic implementation of this parallel composition model is straight�

forward given the traditional parallel composition algorithms used in BDD�

based tools� conjunction of transition relations for synchronous composition

and disjunction for asynchronous composition�

Under the new model we must �rst di�erentiate between unit and zero�

length transitions� Given TRa we de�ne TR�a �TR	a� as the transition re�

lation for zero�length �unit� transitions in Pa� We can then de�ne the global

transition relation for a model with processes Pa and Pb as�

TR � �TR	a � TR	b� 	 �TR�a 	 TR�b�

From this expression we can see that whenever unit transitions are enabled

in all processes they are also enabled in the composed model� The expression

also guarantees that zero�length transitions enabled in some process are also

always enabled in the composed model� The only other condition that must

be imposed in this model is that time eventually change� This can be ensured

by forbidding zero�length loops� which can be enforced by a syntactic check�

To determine how much time has elapsed between events� we use the con�

dition counting algorithms� For example� mincount�a� t � true� b� determines

the minimum time between events a and b� Similarly the maxcount algorithm

can be used to determine the longest time between a and b�

� Expressive Power of the Proposed Method

The proposed method does not have the same expressive power as a dense

time model� Our method uses a di�erent �discretization� of dense time� but

the �nal model is still discrete� It has been proven ��� that there exist systems

which cannot be discretized without changing their behavior� In ��� it is

shown that the following circuit has behaviors that cannot be captured by

any discretization� It has four signals x�� x�� x� and x�� and transitions which

assign values to them as� x� � �x�� x� � �x� and x� � �x�� Each transition

takes time between � and 	 units to occur� Let t�� t� and t� be the times

when each transition occurs� A possible behavior of the circuit could have

transitions times satisfying �
 t� � t� � t�
 	� In a discrete time model the

only values allowed for ti are � or 	� it is impossible to assign three di�erent

values for t�� t� and t�� This behavior cannot exist in a discrete model�

The result of ��� is that only models without strict inequalities can be

guaranteed to be discretized correctly� Only a weaker notion of behavior

preservation can be maintained during discretization� It is possible that events

81

Campos et al�

that occur at di�erent time instants in the dense time model occur at the same

time instant in the discretized model� This is also true for our model� It is

frequently argued that because of this problem systems modeled using discrete

time cannot capture the essential properties of a design� We argue� however�

that the key feature is not an arbitrary accuracy for the representation of t�� t�
and t�� but rather an appropriate discretization together with their ordering�

In fact� in the commonly used continuous�time models� the constants used in

specifying properties can only be integers� and exact values for the timepoints

ti are not expressible�

With the use of transitions that take zero time to occur� our method pro�

vides a way of preserving the same ordering of events as dense time models�

We claim then that the essential properties of a design are preserved by our

method in a similar way as by methods that use dense time� For example�

one property that would capture the behavior above can be written in CTL

augmented with the freeze operator ��� described in ��� as �where ei is the

event corresponding to the transition of signal xi��

x��e� � EF y��e� � EF z��e� � �
 x � y � z
 	���

This can be expressed in our method by the property�

�e� � �e��� E��t U �e� � �e� � �t � E��t U e����

where t is true in unit�length transitions� and false in zero�length ones�

Frequently� the fact that the total time elapsed is less than one time unit

is not encoded in the formula� In this case the formula can be simpli�ed to

�e� � �e��� EF �e� � �e� � EFe��

One important consideration is that this property can be veri�ed using dis�

crete time models by simply doubling the time quantum� This is implemented

by changing all transitions into two consecutive ones� that is� one transition

in the new model takes half a unit� instead of one unit� This however� has

two serious problems� One it adds a signi�cant overhead to veri�cation� The

second one is that it is not possible to know by how much we should decrease

the time quantum� because in general there is no way to �nd out when events

that happened in di�erent times have been considered simultaneous by the

model� Because of this we cannot determine when the results of a veri�cation

using discrete time would be di�erent if the model was re�ned� Our method

does not su�er from these problems� There is no signi�cant overhead added�

since only one additional variable is created in the model� and all possible

ordering of events are represented in the model� making re�nements in the

time quantum unnecessary�

� Examples

��� Steam Boiler

In order to demonstrate the expressive power of our method we have veri�ed

the steam boiler example described in �	��� Steam boilers are mostly used in

82

Campos et al�

thermoeletrical power plants� It is extremely important to keep a steam boiler

working correctly since any malfunction may cause an accident with serious

consequences� The system modeled consists of a water tank� two pumps� and

sensors that measure the pumping rates� the steam evacuation rate and the

water level� A controller oversees the operation of the system� The controller

must guarantee that the water level is always between two values M� and

M� at all times� and should try to maintain water level between the normal

operating levels N� and N� as much as possible� The controller and the phys�

ical plant communicate in discrete intervals� once every � seconds� During

each communication phase� all units send information to the controller� which

responds by sending messages to the units� All communication takes place

instantaneously�

The controller decides to turn the pumps on or o� based on the water

level w� The two pumps need �ve seconds to start pumping water in the

tank because of the high pressure inside the tank� The pumps are turned o�

immediately after receiving a message to stop pumping from the controller�

Four values are used by the controller to decide how many pumps should be

active� Depending on these values and the current water level the controller

turns one or both valves on or o� �details about the system can found in �	����

We have modeled the high�level interactions between discrete control decisions

and the continuous aspects of the underlying physical plant� We concentrate

on the continuous aspects of the system and their modeling with the method

described in the previous section�

We have set the values of the system constants as follows� sampling time

� � seconds� maximal steam rateW �
 liters per second� pumping capacity

P � � liters per second� interval of normal water levels �N� � 	��� N� � 	��

liters� interval of acceptable water levels �M� � ��M� � ���� liters� These

constants have the same values as in �	��� allowing direct comparison of results�

In our model unit transitions model the passage of one second� and zero�length

transitions are used to model nondeterministic events and decisions taken by

the controller� Notice that veri�cation can be performed very accurately� even

though we use a coarse discretization of time�

The most important property of the steam boiler is that the water level is

always between M� andM�� We also require that the emergency�stop mode is

never entered� Therefore� the unsafe states are those that satisfy the formula

�w � M�� 	 �w � M��	emergency stop� Using Verus� we have been able to

verify that the controller maintains the water level within the required bounds�

This result is the same obtained in �	��� The veri�cation took ��� seconds and

	�	 MBytes of memory on a Pentium II system�

We have also veri�ed other properties of the steam boiler using the min�

count and maxcount algorithms� For example� an important parameter of the

system is the size of �� the frequency of communication between controller

and plant� Using Verus we have been able to determine that � �
 also sat�

is�es the safety requirements� but � � � does not� If communication between

83

Campos et al�

controller and units is delayed by up to one second� safety is maintained� but

longer delays can cause safety problems� Several other parameters have been

identi�ed� including� e�g�� the minimum and maximum times needed for water

to go from the minimum to the maximum level� The interval is ������ sec�

onds� meaning that the water may never reach the maximum water level from

the minimum water level� but it never takes less then �� seconds�

��� Automotive Engine Controller in Cuto� Model

In order to demonstrate the e�ciency of the method we have veri�ed an au�

tomotive engine controller in cuto� mode described in �	�� and veri�ed by

HyTech� We have studied the cuto� mode� where we consider control of the

engine once the driver has released the accelerator pedal� The system must

then guarantee that the engine will deliver zero torque within a certain time�

The control objective is to reach injection cuto� while minimizing acceleration

discomfort� If fuel injection is abruptly cut o�� the vehicle may exhibit very

undesirable acceleration oscillations� If fuel injection remains on for a long

time the car does not decelerate� In order to minimize these problems� the

controller makes intelligent decisions about when and how to cut o� fuel�

The system consists of the engine� which includes the driveline and the

cylinders� and its controller� The engine has four cylinders� each of which

cycles in lockstep through four phases in the following order� intake �I�� com�

pression �C�� expansion �E�� and exhaust� The controller must make its deci�

sion on injection �modeled by the binary output variable j� at the beginning

of the preceding exhaust phase� If fuel is injected into a cylinder� the cylinder

produces torque on its next expansion phase� Thus the driveline does not

react to a control decision until three phases later�

The controller sets the value of j at each phase change� with the function

F modeling the decision to inject fuel or not� The function F is de�ned over a

transformed state space �over the variables x�� x�� x�� x�� that helps isolate the

fundamental modes related to acceleration oscillations� Powertrain oscillations

are due to the pair of complex conjugate poles� which are related to x� and x�

components� Thus� our analysis concentrates on the x� � x� subspace� where

the encirclements of the origin correspond to oscillations �more details about

the system can be found in �	����

The automotive engine controller should meet the requirement that for a

given initial condition the state is close to the origin �injection cuto�� within

a bounded number of phases �convergence�� To show the convergence re�

quirement using the same parameters described in �	�� we have computed the

maximum time from an initial state until a trajectory is close to the origin�

We have used Verus to verify the requirements� The code for the example

has been generated automatically from the HyTech original code using a perl

script written for this purpose� We have divided the x� � x� state space into

� x � partitions increasing the accuracy of the rectangular approximations�

84

Campos et al�

In our model� phase changes occur in unit time� and all other events happen in

time zero� We have determined that the maximum time until a trajectory is

close to the origin is �� steps� the same result obtained by HyTech� Veri�cation

was performed very e�ciently� but at the same time it has shown a limitation

of our method� The source �le for this example is extremely large� it has more

than ������ lines of Verus code� It is� to the authors� knowledge� the largest

example veri�ed by symbolic model checking� It took Verus several hours to

compile this code into a transition graph representing the system� Once the

model was generated� however� veri�cation was performed in only 	� seconds�

The reason for the long compilation time seems to be related to the fact

that for systems which involve large constants� discretization can lead to a

large state space representation even when using BDDs� This is caused by

the binary encoding of integer values used� In some of these cases� continuous

time models may be more e�cient� since the representation is less dependent

on time granularity� However� for models whose timing constants are well�

behaved� a discrete�time model with a uniform BDD�based representation can

present signi�cant gains in e�ciency� In this case it seems that both e�ects

were present� The values represented for x� and x� are well behaved� but

their values are large� as well as the number of operations that have to be

performed on them� making the generation of the model slow� but possible�

Veri�cation� on the other hand� was performed extremely fast� showing that

the complexity is related to the manipulation of large integer values� not to

the representation of time�

� Conclusions

In this work we propose a new algorithm to perform quantitative timing analy�

sis of models that is more e�cient than its predecessor� This algorithm� called

condition counting� counts the minimum and maximum number of occurrences

of events between two events start and �nal� The algorithm is used to imple�

ment an alternative method to represent time which enables the veri�cation of

systems that were previously considered to require dense time models� Veri��

cation under the new model can be performed as e�ciently as for discrete time

models� The proposed method has been implemented in Verus� but it can be

used in most BDD�based symbolic model checkers� Two examples that had

previously been veri�ed by the dense�time tool HyTech have been modeled

and veri�ed in Verus� Future work includes a more accurate characterization

of the expressive power of the method�

Acknowledgments

We would like to thank Howard Wong�Toi for the many useful discussions

about the examples that have been veri�ed in HyTech�

85

Campos et al�

References

��� Rajeev Alur� Costas Courcoubetis� and David Dill� Model�checking for real�
time systems� In Proc� �th Annual IEEE Symp� on Logic in Computer Science�
pages 	�	
	��� Philadelphia� PA� USA� June ��� IEEE Press�

��� Eugene Asarin� Oded Maler� and Amir Pnueli� On discretization of delays in
timed automata and digital circuits� In D� Sangiorgi and R� de Simone� editors�
CONCUR���	 Concurrency Theory� �th Int� Conf� Proc�� volume �	�� of LNCS�
pages 	��
	�	� Nice� France� September ��� Springer�

��� S� Campos� E� Clarke� W� Marrero� and M� Minea� Verifying the performance
of the PCI local bus using symbolic techniques� In Proc� IEEE Int� Conf� on

Comput� Design� pages ��
��� Austin� TX� USA� October ��� IEEE Press�

�	� S� V� Campos� A Quantitative Approach to the Formal Veri
cation of Real�

Time Systems� PhD thesis� School of Computer Science� Carnegie MellonUniv��
���

��� S� V� Campos� E� M� Clarke� W� Marrero� and M� Minea� Timing analysis of
industrial real�time systems� In Proc� Workshop on Industrial�strength Formal

Speci
cation Techniques� pages �
���� Boca Raton� FL� April ��� IEEE
Press�

��� S� V� Campos� E� M� Clarke� W� Marrero� M� Minea� and H� Hiraishi�
Computing quantitative characteristics of �nite�state real�time systems� In
Proc� ��th IEEE Real�Time Systems Symp�� pages ���
���� San Juan� Puerto
Rico� December �	� IEEE Press�

��� E� M� Clarke and E� A� Emerson� Design and synthesis of synchronization
skeletons using branching time temporal logic� In Logic of Programs	 Workshop�
volume ��� of LNCS� pages ��
��� Yorktown Heights� NY� USA� ���� Springer�

��� E� M� Clarke� E� A� Emerson� and A� P� Sistla� Automatic veri�cation of �nite�
state concurrent systems using temporal logic speci�cations� ACM Transactions

on Programming Languages and Systems� ������		
���� ����

�� H� De�Leon and O� Grumberg� Modular abstractions for verifying real�time
distributed systems� Formal Methods in System Design� ���
	�� ���

���� David L� Dill� Timing assumptions and veri�cation of �nite�state concurrent
systems� In J� Sifakis� editor� Proceedings of the International Workshop on

Automatic Veri
cation Methods for Finite State Systems� volume 	�� of LNCS�
pages ��
���� Grenoble� France� June ��� Springer�

���� T� A� Henzinger� P� H� Ho� and H� Wong�Toi� HyTech� the next generation� In
Proc� ��th IEEE Real�Time Systems Symp�� pages ��
��� Pisa� Italy� December
��� IEEE Press�

���� Thomas A� Henzinger� Zohar Manna� and Amir Pnueli� What good are digital
clocks � In W� Kuich� editor� Automata� Languages and Programming� �th

86

Campos et al�

International Colloquium Proceedings� volume ��� of LNCS� pages �	�
����

Wien� Austria� July ��� Springer�

���� Thomas A� Henzinger� Xavier Nicollin� Joseph Sifakis� and Sergio Yovine�

Symbolic model checking for real�time systems� In Proc� �th Annual IEEE

Symp� on Logic in Computer Science� pages �	
	��� Santa Cruz� CA� USA�

June ��� IEEE Press�

��	� Thomas A� Henzinger and Howard Wong�Toi� Using HyTech to synthesize

control parameters for a steam boiler� In Formal Methods for Industrial

Applications	 Specifying and Programming the Steam Boiler Control� volume

���� of LNCS� pages ���
���� Springer� ���

���� K� G� Larsen� P� Pettersson� and W� Yi� Compositional and symbolic model�

checking of real�time systems� In Proc� ��th IEEE Real�Time Systems Symp��

pages ��
��� Pisa� Italy� December ��� IEEE Press�

���� K� L� McMillan� Symbolic Model Checking� Kluwer Academic Publishers� ���

���� Tiziano Villa� Howard Wong�Toi� Andrea Balluchi� Joerg Preussig� Alberto

Sangiovanni�Vincentelli� and Yosinori Watanabe� Formal veri�cation of an

automotive engine controller in cuto� mode� In CDC��	 IEEE Conference on

Decision and Control� Tampa� Florida� December ���

���� S� Yovine� Kronos� A veri�cation tool for real�time systems� Springer

International Journal of Software Tools for Technology Transfer� �� October

���

87

