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Abstract 

Multimedia systems such as video-on-demand (VOD) 
servers are time critical systems. These systems have 
strict response times, which implies that a delayed 
response can have serious consequence. For instance, 
in the case of a VOD server, an immediate conse- 
quence of a delayed response time can be user dis- 
satisfaction, what can ultimately lead to the end of 
a business based on this system. Therefore, analysis 
and verification of timing properties of multimedia 
systems is an important problem. To verify if time 
critical systems satisfy their time bounds, we discuss 
the use of formal methods tools, in the verification 
and analysis of multimedia systems. We have used 
Verus (a formal verification tool) to model and ana- 
lyze the ALMADEM-VOD server, a component of a 
true video-on-demand system. The modeling of this 
server in Verus has provided great insight into its 
design and its dynamic behavior. Using the quan- 
titative estimates provided by Verus, we have de- 
termined performance bounds to the server. These 
bounds have pointed out that the performance curve 
of the actual server was almost at the predicted upper 
bound (worst case) level. These curves have uncov- 
ered design inefficiencies. After optimizing the server, 
its performance has improved over 40%, showing how 
useful formal verification can be used successfully 
during the design of multimedia systems. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial a&ant 
-age and that copies bear this notice end the full citation on the first page. 
To copy otherwise, to republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or a fee. 
ACM Multimedia ‘99 10199 Orlando, Ft., USA 

0 1999 ACM l-58113.151-8/99/0010...$5.00 

1 Introduction 

The fast development of new technologies for high 
bandwidth networks, wireless communication, data 
compression, and high performance CPUs has made 
it technically possible to deploy sophisticated infras- 
tructures, such as illustrated in Figure 1, for sup- 
porting a variety of multimedia applications [18, 291. 
This type of infrastructure opens up opportunities 
for exploring multimedia applications such as qual- 
ity audio and video on demand (from home), virtual 
reality environments, digital libraries, and coopera- 
tive design. The user has access to these applica- 
tions through a laptop (connected, for instance, to a 
wireless link), a PC-based workstation, or a TV set 
connected to a set-top box. Due to the high interac- 
tivity of such applications, the success of the service 
is heavily dependent on the delays incurred in the 
high bandwidth network, on the delays incurred at 
the server and client machines, and on the perfor- 
mance at the multimedia server. To keep such delays 
within acceptable bounds, it is necessary to check the 
timing system properties. 

Figure 1: Overall architecture for a video service. 

However, due to its size and complexity, checking if 
a multimedia system satisfies its timing specification 
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is an extremely difficult task. Traditional verifica- we present related work. In Section 3, we discuss the 

tion methods such as testing and simulation can not Verus tool. In Section 4, we present the ALMADEM- 

cover all error possibilities. An alternative approach VOD video server. In Section 5, we cover the model- 
to deal with this task is the utilization of formal tech- ing of this server in Verus. In Section 6, we present 
niques. Formal techniques can assure the correctness our analytical and experimental results. Our conclu- 

of a program with concern to certain desired prop- sions follow. 
erties. That is the approach we have used in this 
work. 

The formal approach we adopt here is based on 
2 Related Work 

symbolic <model checking (SMC) [4, 241, a formal Rate M 
method which has obtained significant success re- 

onotonic Scheduling Theory (RMS) [23, 221 is 

cently. This method allows the verification of timing 
a well known technique for real-time systems analy- 

properties of a system expressed as temporal logic 
sis. Given a set of processes defined by their execu- 

formulas. Such formulas provide a foundation for 
tion time and frequency of execution, RMS is able 
t o e ermine if the system is schedulable. However, d t 

the design and implementation of formal verification RMS 

tools. One such tool is Verzls [8, 51 - a software en- 
restricts the type of systems that can be ver- 

vironment which can be used to verify time critical 
ified, such as for example, distributed systems and 

systems in general. In particular, in this work we use 
systems with aperiodic processes (i.e., systems whose 

Verus to verify a specific component of the system - 
processes occur non deterministically). 

the multimedia server. 
Other works that also model a system as a state 

We focus our study on the verification of a low cost 
transition graph [17, 191, only determine if the prop- 

video on demand (VoD) server called ALMMADEM- 
erties are satisfied by the model, without provid- 

VOD, developed within the ALMADEMl project. 
ing any quantitative information. Other SMC-based 
t ec mques have been extended to deal with real-time h - 

Such type of server is quite distinct from conventional 
servers, such as database and Web servers, which do 

systems [13, 301, but only determine if the properties 
are satisfied by the model, or provide limited quanti- 

not have to take into account strict time constraints. 
In a VoD server, failure to meet the time application 

tative information about the system [14]. 
Some verification tools adopt a continuous time ap- 

constraints will certainly lead to user dissatisfaction preach [l, 211, contrary to Verus, which uses discrete 
and consequently to risks of commercial failure. Fur- time. Although continous time approach allows a 
ther, to be cost effective the VoD server must present more accurate measurement of time, it demands a 
good performance (which is usually measured as the 1 
number of users which can be served simultaneously). 

arger space to represent the model. This demand 
makes modeling complex systems very difficult. 

We have modeled the ALMADEM-VOD server in In formal tools based on Z [ZS], systems are speci- 
Verus to verify its timing properties. We have also fi d * t e m erms of rich mathematical structures like sets, 
analyzed quantitative estimates provided by Verus relations, and functions. However, the proof of the 
for critical. system parameters. These estimates have specification generally is not totally automatic. In 
been compared with empirical results obtained from Verus the specification of a system can be totally ver- 

the server. This comparative analysis has led to a ihed in an automatic way. 
better understanding of the server operation and has Other approaches for verifying the correctness of 
revealed inefficiencies in the server. After inefficiency temporal features of a multimedia application have 

causes were eliminated, the system performance has b een proposed in the literature. In [26], the tempo- 
improved over 40%. Formal verification has been ral consistency of a hypermedia document is verified 
very useful in detecting system inconsistencies and using an RT-LOTOS description, which is generated 
in enhancing our knowledge about this server. automatically from the document specification. A 

This paper is organized as follows. In Section 2, similar approach is adopted in [15] which proposes a 

‘ALMADEM (Analysis and Applications of Algorithms for 
synchronization model to verify the temporal consis- 

High Performance Multimedia Networks) is a project financed 
tency of a multimedia document. In [16], a suite of 

bv the Ministrv of Science and TechnoloEtv in Brazil. within formal methods is used to verify the correctness of 
the program PROTEM-III. 

“I 

PREMO - a standard for the presentation of mul- 
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timedia objects. We observe, however, that such ap- 
proaches are quite distinct from our work here which 
aims at verifying the dynamic temporal behavior and 
the performance of the multimedia system. 

3 Verus 

Verus is an efficient tool for performing the formal 
verification of multimedia systems and can exhaus- 
tively check the state space of systems with more 
than 103’ states, in a few minutes [7, 91. Verus rep- 
resents the system being verified as a state-transition 
graph and verifies properties about its behavior de- 
scribed in temporal logic. It also allows determining 
qzlantitatiwe information about the system such as its 
reaction time to events and the number of times an 
event occurs in a given time interval. The informa- 
tion produced allows the user to check the temporal 
correctness of the model and also provides insight 
into the behavior of the system. Such type of insight 
can help the user identify inefficiencies and suggest 
optimizations to the design. Further, this analysis 
can be performed before the actual implementation, 
significantly reducing development costs. 

Verus has already been applied to the verification 
of several large complex systems (which are in pro- 
duction or are components of current industrial prod- 
ucts) such as an aircraft controller [9], a robotics con- 
troller [6], and a distributed heterogeneous real-time 
system [lo]. In this work, we use Verus to verify 
the ALMADEM-VOD video server - a low cost VoD 
server implemented on a PC platform. 

3.1 The Verus Language 

The Verus specification language is presented in this 
section by a simple example. We discuss the model- 
ing of a non deterministic event and an alarm (that 
rings when the event occurs). A Verus specifica- 
tion related to this scenario is presented in Figure 2. 
Statement 1 declares a boolean global variable. In 
Verus, the variable types are boolean and integer, 
and global variables are the means of communication 
among processes (each Verus function models an in- 
dependent process). Statements 2 to 11 define the 
alarm, and statements 12 to 17 define the non deter- 
ministic event. The non determinism of the event is 
stated by the select statement (in line 14). It assigns 

czlrred, each time it executes. The wait statements 
in the program serve two purposes: they determine 
the passage of time in the model, and they allow pro- 
cesses to observe the changes of value of all the vari- 
ables of the model. 

1 boolean occurred; 

2 alarm 0 C 12 event 0 ( 
3 boolean ring; 13 while (true) 1 
4 while (true) { 14 occurred = 
5 if (occurred) select{false, true>; 
6 ring = true; 15 wait (1); 
7 else 16 1 
8 ring = false; 17 I 
9 wait (1); 
10 1 18 spec 
11 1 19 AG (occurred -> AF ring); 

Figure 2: An example of a Verus program. 

Properties of the system are expressed in Compu- 
tation IPree Logic (CTL) [12]. A CTL formula is 
formed by atomic propositions, connectives (- and 
A), and/or temporal operators. These operators al- 
ways come in pairs: a path quantifier followed by a 
temporal quantifier. A path quantifier states that a 
property should be true for all (A) paths from a given 
state, or for some (E) path from a given state. A tem- 
poral quantifier describes how the states should be or- 
dered with respect to time, for a path specified by the 
path quantifier. Some examples of temporal quanti- 
fiers are: F4, where 4 holds sometime in the future; 
G$, where 4 holds globally on the path. Statement 
19 is an example of a Verus property and informally 
means that “everywhere in the model, whenever the 
event indicated by variable occurred occurs (AG), the 
alarm will always ring sometime in the future (AF)“. 

3.2 The Model 

The state transition graph generated for a program P 
is Gp = {Sp, Ip, Tp}, where Sp is the set of states, 
Ip 2 5’~ is the set of initial states, and 2” is the 
relation that defines the transition among states in 
Sp. Each state is labeled by the value of all variables 
of P; a state differs from others by the value of these 
variables. 

The states of Gp can be represented by boolean 
formulas, and each formula represents the set of 

randomly the value false or true to the variable oc- states in which the formula is true. For example, 
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the formula (X V 1~) represents all the states of Gp, 
in which :c is true or y is false. Tp, the transition 
relation, can also be represented by boolean formu- 
las. To do that we use two sets of distinct variables, 
S representing the current state and S’ representing 
the next state. If the current state s is represented by 
the formula fs over variables in S, and the next state 
s’ is represented by the formula fsl over the variables 
in S’, then the transition T(s, s’) can be represented 
by the forrnula fs A fs/, As an example, the transition 
from the state (x, y) to the state (X, y) is represented 
by the for:mula (X A -19 A YE’ A 1~‘). Tp is the dis- 
junction of all transitions in Gp. 

Figure 3: The transition relation and the related 
graph of the program event-alarm. 

Figure 3 presents the transition relation and the 
related graph for the program presented in Figure 2. 
The variables WC are wait-counters that are used to 
marls the position of a wait statement in the pro- 
gram. The wait-counters determine the flow of the 
program execution, and an initial wait statement (WC 
= 0) is introduced by the compiler. An exclamation 
mark (!) before a variable indicates that this vari- 
able is false. A quote (‘) after a variable indicates 
the value of this variable in the next state. For ex- 
ample, the first transition says that in the current 
state the variables event.wc and alarm. wc are both 
equal 0 (zero); and in the next state the variables 
occurred and aZarm.ring are both false. This transi- 
tion is graphically represented by the edge from the 
state labeled by (event.wc = 0 alarm.wc = 0) to the 
state labeled by (event.wc = 1 alarm.wc = 1 !occurred 
!alarm.ring). The advantage of this representation is 
that it avoids the construction of the graph, repre- 
senting only the conditions required by transitions, 
therefore minimizing the necessary space to represent 
the model. 

Binary Decision Diagrams 

As mentioned before, a Verus model is a state tran- 
sition graph. However, the approach of modeling 
systems as a graph suffers from the state explosion 
problem. This problem is the exponential relation 
of the number of states in the model to the number 
of components of the system being modeled. Verus 
minimizes this problem because the model (graph) is 
represented by a Binary Decision Diagram (BDD)[3] 
that is a canonical representation for Boolean for- 
mulas . A BDD is obtained from a binary decision 
tree by merging identical subtrees and eliminating 
nodes with identical left and right siblings. The re- 
sulting structure is a directed acyclic graph rather 
than a tree. This allows nodes and substructures to 
be shared. The vertices of the graph are labeled with 
the variables of the Boolean formula, except for the 
two “leaves” which are labeled with 0 and 1. To en- 
sure canonicity, a strict total order is placed on the 
variables as one traverses a path from the “root” to 
a “leaf.” The edges are labeled with 0 or 1. For ev- 
ery truth assignment there is a corresponding path 
in the BDD such that at vertex CC:, the edge labeled 
1 is taken if the assignment sets x to 1; otherwise, 
the edge labeled 0 is taken. If the path ends in the 
“leaf” labeled 0, then the assignment does not satisfy 
the formula, and conversely, if the “leaf” reached is 
labeled 1, then the formula is satisfied by the assign- 
ment. Figure 4 illustrates the BDD for the Boolean 
formula (u A b) V (c A d). To each instantiation of 
the variables a, b, c, d which makes the formula true, 
there is a direct path from the node a to node 1. 

a /4 0 1 

&fofg & 
0001000100011111 0 

Decision binary tree BDD 

Figure 4: Decision binary tree and a correspondent 
BDD for the Boolean formula (CZ A b) V (c A cl). 
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3.3 Quantitative Algorithms 

Most verification algorithms assume that timing con- 
straints are given explicitly. Typically, the designer 
provides a constraint on the response time of some 
operation, and the verifier automatically determines 
if it is satisfied or not. Unfortunately, these tech- 
niques do not provide any information about how 
much a system deviates from its expected perfor- 
mance, although this information can be extremely 
useful in tuning the behavior of the system. 

Verus implements algorithms that determine the 
minimum and maximum length of all paths leading 
from a set of starting states to a set of final states. 
It also has algorithms that calculate the minimum 
and the maximum number of times a specified condi- 
tion can hold on a path from a set of starting states 
to a set of final states. Our algorithms provide in- 
sight into how well a system works, rather than just 
determining whether it works at all. They enable a 
designer to determine the timing characteristics of a 
complex system given the timing parameters of its 
components. This information is especially useful in 
the early phases of system design, when it can be 
used to establish how changes in a parameter affect 
the global system behavior. 

Several types of information can be produced by 
this method. Response time to events is computed 
by making the set of starting states correspond to 
the event, and the set of final states correspond to 
the response. Schedulability analysis can be done by 
computing the response time of each process in the 
system, and comparing it to the process deadline. 
Performance can be determined in a similar way. In 
fact, the algorithms have been used to verify several 
real-time and non real-time systems [7, 91. 

4 The ALMADEM-VOD Video 
Server 

The fundamental premise in the development of the 
ALMADEM-VOD video server is that it should use 
only off-the-shelf low cost components, as also done 
in [18, 25, 291. As a result, the server is implemented 
on a PC-based platform running the Linux operating 
system. To fullfill the real time requirements of the 
video application, the operating system is adapted 
in specific points such as the disk access and process 
scheduling routines. 

The overall architecture of our video service is as 
illustrated in Figure 1. The user accesses a Web in- 
terface in a remote client machine (i.e., a TV with a 
set-top-box, a PC, or a laptop connected through a 
wireless link) to select a film (or object) of his pref- 
erence. Once the film is selected, a requisition for a 
stream for that film is sent to the server (through a 
TCP connection). The server then runs an admis- 
sion control routine which schedules the request if 
there are enough resources available (typically, the 
main bottleneck is disk bandwidth). Once the re- 
quest is scheduled, blocks of data are sent periodi- 
cally to the client in push mode (as UDP messages). 
Figure 5 illustrates the software organization of the 
ALMADEM-VOD video server. 

thread priority=3 BUFFER 

Figure 5: Software architecture of the video server. 

Two data structures and three separate processes 
are distinguished. The data structures are called 
storage and buffer. The processes (implemented as 
POSIX threads) are called disk, network, and clerk. 
To ensure proper timing in the scheduling of these 
threads, we rely on one of the real time scheduling 
policies available with the Linux operating system. 
We use the SCHED-FIFO policy which implements 
a first-in-first-out scheduling scheme with static pri- 
orities. In this policy, the priority number of a thread 
is directally proportional to the system priority. De- 
spite its simplicity, this scheme works quite well if the 
machine is dedicated to the video server task (i.e., we 
run the video server in run level 1). 

The storage structure is composed of secondary or 
tertiary devices and is used to hold the collection of 
films available to the users. The current implemen- 
tation of the ALMADEM-VOD server considers only 
secondary devices in the form of conventional SCSI- 
2 disks of 4G bytes each. The disks store the films 
encoded and compressed in MPEG-1 format. Each 
film is divided in blocks which are retrieved for deliv- 
ery to the client machine. In its simplest implementa- 
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tion, which is adopted in this study, the ALMADEM- 
VOD server considers a contiguous layout of films 
on disk. In this layout, all blocks of a same film 
are stored contiguously on disk. More sophisticated 
layout schemes, involving striping techniques [2, 111, 
region-based allocation [20], and randomized place- 
ment [27], have been discussed extensively in the lit- 
erature but are not the focus of this work. 

The bufler structure is basically main memory 
space used to synchronize the disk and network 
threads. It is implemented as a circular buffer which 
is filled by the disk thread and emptied by the net- 
work thread. 

The network thread is responsible for taking the 
blocks of film from the buffer and shipping them ac- 
cross the network. It is scheduled whenever the disk 
thread is blocked at the disk driver waiting for a disk 
access to complete. 

The thread named clerk listens at a TCP port for 
the requests from the client machines. Such requests 
might come from new clients or from a current client 
which requests, for instance, a pause in the exibition. 
Once it detects a client request, this thread passes 
the information to an admission control routine for 
proper scheduling. If the server is saturated (i.e., it 
is currently serving a maximum number of clients), 
a request for a new stream is not scheduled and a 
denial message is sent to the respective client. 

The disk thread is responsible for reading the data 
from the secondary storage and storing them at the 
buffer area. To avoid delays introduced by the oper- 
ating system (which we cannot control), disk accesses 
are performed through direct access functions which 
communicate directly with the SCSI controller de- 
vice. For each active client, a separate block (which is 
composed of several MPEG frames) of (average) size 
B bytes is read, passed to the buffer area, and from 
there shipped (by the network thread) to the corre- 
sponding client machine. While that client consumes 
the frames in that block, other clients can be attended 
to. This cyclic scheduEing process is repeated with a 
fixed time period equal to T, as illustrated in Fig- 
ure 6. To implement this fixed time period, the disk 
thread monitors the Real Time Clock (RTC) device 
in the Linux kernel. 

The time period T defines the service cycle. At 
each service cycle, all scheduled clients are served. 
To serve a, client, the seruer incurs two fundamental 
delays: a seek time t, and a transfer time t,. The 

T 

Figure 6: Service cycle with a duration of T seconds. 
t, accounts both for seek and rotational delay times. 

time ts is the time to position the disk head at the 
proper cylinder, plus the time to position the disk 
head at the proper block of data in this cylinder (i.e., 
ts includes rotational latency time). The time t, is 
the time to read the block of data from disk. The 
total time Ts spent serving all clients in the system 
is called the service time. The sleeping time T, is 
the portion of the service cycle in which no clients 
are served. Such sleeping time is necessary because, 
to avoid buffer overflow at the client machine, the 
server does not attend a same client twice in a service 
cycle. The ratio T,/T defines the occupation of the 
service cycle. Larger the occupation of the service 
cycle, higher is the load in the system. 

In the ALMADEM-VOD server (as seen in Fig- 
ure 6), the transfer time can vary from one film to 
another because the block sizes, though constant for 
a same film, differ from one film to another. The rea- 
son is that the coding scheme might vary from one 
film to another (for instance, a film might be encoded 
for a smaller window size) and that the compression 
rate is not constant accross various films. The impor- 
tant detail is that, in the ALMADEM-VOD server, 
any block of any film is composed of roughly a same 
number of frames, which defines the duration of the 
service cycle. To exemplify, consider that each client 
consumes frames at the typical rate of 30 fps (frames 
per second). Then, if each block sent to a client in- 
cludes 30 frames, the value of T is 1 second to avoid 
interruption in the continuous display of the film at 
the client machine. If each block includes 120 frames, 
then the value of T is 4 seconds. 

To simplify the implementation, the ALMADEM- 
VOD server uses a Constant Data Length (CDL) 
block instead of a Constant Time Length (CTL) 
block [29]. The length of the blocks in which a given 
film is divided is determined by the maximum con- 
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sumption rate at the client. This ensures smooth 
display at the client machine. However, buffer over- 
flow might occur at the client because the rate of ar- 
rival exceeds the average consumption rate. To avoid 
this problem, the client sends a pazlse message to the 
server whenever it detects that its buffer is filling up. 

Let Rci be the rate (in bytes per second, or Bps) 
with which the ith client consumes a block of data. 
Further, let Bi be the size (in bytes) of the blocks 
of data for the ith client, as indicated in Figure 6. 
Then, the period 2’ is given by 

T=-$ 
z 

Additionally, let Rd be the transfer rate of the disks 
in our seconday storage and let N be the maximum 
number clients which can be served in a cycle. We 
can then write 

5 Bi = (T - N t,)Rd 
i=l 

By substituting equation (1) into equation (2), we 
obtain 

N=;(&g) 
Equation 3 shows that the maximum number of 
clients in the system is a direct function of the ra- 
tio x2”=, Rci/Rd and thus, that the sum of all rates 
Rci must be smaller than the disk transfer rate Rd. 
Furthermore, the average block size (which deter- 
mines the duration of the cycle service) must be large 
enough to provide an amortization of the time wasted 
with seek operations. In fact, a small average block 
size reduces the value of T making the fraction T/t, 
smaller. This implies that the fraction of time avail- 
able in a cycle for actually reading data from disk is 
smaller which leads to a reduction in the maximum 
number of clients which can be attended simultane- 
ously. 

Amortizing seek time (through an increase in the 
service cycle) is critically important because it im- 
proves server performance (in terms of the maximum 
number of clients which can be served). However, 
an excessive increase in the service cycle is counter- 
productive because it implies in an excessive latency 
- the time a new user waits to be served. This is 
because new users are only served in the cycle which 
initiates following their arrival. Additionally, large 

Figure 7: Service cycle occupation in the 
ALMADEM-VOD server for periods varying from 1s 
to 9s. The number of clients in the system is 20. 

service cycles require larger memory buffers at the 
server and at the client machines. 

Figure 7 illustrates the occupation of the service 
cycle in the ALMADEM-VOD server for values of 
the period T varying from 1 second to 9 seconds. 
The number of clients in the system is 20. When 
T = 1 the occupation of the service cycle is high 
because of seek time (t,). The system spends more 
time doing seek than reading block of films. When 
T is increased, seek time is amortized by the reading 
time. As shown, the amortization of the seek time 
is less significant after T = 7s and does not improve 
much after T = 4s. For periods larger than 4 seconds, 
the server incurs higher latency without considerable 
additional gains in server performance. Thus, for the 
ALMADEM-VOD server, we adopt T = 4s as a good 
compromise between client latency and server perfor- 
mance. 

At each client machine, it is necessary to run the 
ALMADEM-VOD client module which is composed 
of three sub-modules: network, bz@er, and decoder. 
The netvrorlc component is implemented as a thread 
which receives blocks of film from the server and 
saves them in the bufler data structure. From the 
buffer, each block is passed to the decoder compo- 
nent through a Linux pipe. This architecture iso- 
lates the decoder (which is normally a commercial 
piece of software) from the client code (which we im- 
plemented) and provides for great flexibility. For in- 
stance, we were able to substitute the MPEG decoder 
for an audio player in a couple of hours. 
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5 Modeling the ALMADEM-VoD 
Server in Verus 

Verus has a specification language that is similar to 
the programming language C. The Verus language 
provides special primitives that allow the user (i.e., 
designers and engineers) to model timing aspects of 
a system such as deadlines, priorities and time de- 
lays. Thus, modeling a multimedia system in Verus 
resembles writing a C program. A Verus specifica- 
tion is converted into a state transition graph (see 
Figure 3) and efficient search algorithm determines if 
the model satisfies the properties. 

The modeling of the ALMADEM-VOD server has 
occurred while the designers of this system were de- 
veloping it. The system parameters we have consid- 
ered in the model were obtained from the version that 
was running at that time. The system parameters 
are: (1) a period of 4 seconds; (2) a consumption rate 
Rci at each client machine which varies from 1Mbps 
to 1.2Mbps (mega bits per second); (3) a film block 
size B which varies from 500K bytes to 600K bytes; 
(4) a contiguous layout of the blocks of each film in 
disk; (5) a disk transfer rate of 7.8MBps (mega bytes 
per second); (6) a disk seek time (including rotational 
delay time) which varies from 10ms to 20ms (mil- 
liseconds). The disk transfer rate were determined 
by reading disk blocks from disk. Although the nom- 
inal disk transfer rate of the disk is IOMBps, reading 
500KB to 600KB disk blocks of films has led to disk 
transfer rate presented in item 5. 

As mentioned before, performance in a VOD sys- 
tem is measured by the number of users it can serve 
simultaneously. The designers of the ALMADEM- 
VOD system had already measured the system per- 
formance, but they did not have any information 
about how close to optimum this performance was. 
Since the ALMADEM-VOD server is the bottleneck 
of the system, we have modeled it to determine the 
minimum and maximum number of users the server 
can support in a cycle of service (4 seconds). In this 
model (Figure 8)) we have considered the seek and ro- 
tational delay times (t,), and the transfer (tT). Each 
wait (1) statement means 5ms. The time t, varies 
from 10ms to 20ms (corresponding to 2 to 4 wait’s) 
and is assigned non deterministically. The time t, 
varies approximately from 60ms to 75ms (correspond- 
ing to 12 to 15 wait’s), depending on the block size. 
The MIN and MAX statements relate to the quanti- 

. . . 
vhile (true) C 

. . . 
seekTime = select <2,3,4); /* valid seek time */ 
while (seekTime > 0) { 

vait (1); /* passage of seek time */ 
seekTime = seekTime - 1; 

3 
readingTime = select {12,13.14,15); /* valid disk time */ 
while (readingTime > 0) { 

wait (1); /* passage disk transfer time */ 
readingTime = readingTime - 1; 

1 
. . . 

) 
. . . 

/* minimum and maximum service time in a cycle */ 
MIN CbeginningOfService, end0fService); 
MAX (beginningofservice, end0fService); 

Figure 8: Portions of the specification of the 
ALMADEM-VOD server in Verus. 

tative algorithms mentioned in Section 3.3. These al- 
gorithms are able to determine, respectively, the min- 
imum and maximum distance between two events. In 
the case of this model the events are the beginning 
and the end of a cycle of service. Using these algo- 
rithms we were able to determine the bounds of the 
server in terms of the number of users served simul- 
taneously. 

6 Results 

We have compared the quantitative results provided 
by Verus with the empirical results obtained from the 
server. The critical system parameters, discussed in 
Section 5, are the same both for the Verus model and 
for the version of the server used in our experiments. 

In Figure 9, we illustrate how the service time 
evolves as the number of clients in the system in- 
creases. The continuous curve is relative to measure- 
ments obtained from the ALMADEM-VOD server, 
while the dashed curves illustrate the minimum and 
maximum service times according to Verus. We ob- 
serve two major facts: (1) the ALMADEM-VOD 
server always operates at or above the maximum ser- 
vice time predicted by Verus; (2) the ALMADEM- 
VOD server presents an unexpected non-linearity in 
its service time when saturation has not been reached 
yet (i.e., with 25 clients in the system). 

These two observations motivated a thorough in- 
spection of the implementation of our server and of 
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Figure 9: Variation of the service time occupation by 
clients for the server and for Verus (2’ = 4s). 

the Verus model we built, in an attempt to make 
the results generated by the ALMADEM-VOD server 
and by Verus consistent. 

We have analyzed the dynamic behavior of the 
Verus model and it was working properly. We have 
then measured once more the various system param- 
eters we were using and found a problem. The Verus 
model we built considers a constant disk transfer rate. 
However, modern disk devices use a multi-zone orga- 
nization in which there are more sectors per track in 
the outer tracks. As a result, the outer tracks yield 
a higher transfer rate because their tangential speed 
is higher. To correct the problem, we have changed 
the Verus model to consider that the transfer rate 
assumes basically 4 distinct values depending on the 
track the block of data is in. The new predictions for 
the service time are shown in Figure 10. We observe 
that now the maximum service times predicted by 
the revised Verus model are higher. 

However, under heavy load, the service times ob- 
tained from the ALMADEM-VOD server continue 
to exceed the maximum service times predicted by 
Verus, as illustrated in Figure 10. Further, the non- 
linearity in the service time of the server is still with- 
out explanation. Clearly, the implementation of the 
server is running into non anticipated overheads. In 
the search for an explanation, we have investigated 
the code for the VoD server and then noticed a pecu- 
liarity which had not been accounted for in the Verus 
model we built. This peculiarity is as follows. 

In our laboratory, the video server sends blocks of 
film to its clients through a Myrinet switch which 
runs at a raw bandwidth of 1 Gbps (giga bits per 

,.. ..: . :.. .__ 

Figure 10: Service time for the ALMADEM-VOD 
server and for the revised Verus model (T = 4s). 

disk i network C 
while (1) C while (1) < 

. * . . . . 
pthread-cond-signal(&cs); pthread-cond-wait(&cs,&mtx); 
. . . . . . 
Read blocks from disk; mini-cyclesO; 
. . . . . . 

1 1 
) > 

Figure 11: Synchronization of disk and network 
threads through a pair of signal and wait primitives. 

second). At this bandwidth, conventional implemen- 
tations of the link layer are unable to handle all the 
data which arrives at the network physical device. 
The result, which we observed systematically, is that 
packets of data are lost at the client machine if a block 
of film large enough is passed at once to the Linux 
link layer at the server side. Unfortunately, the block 
sizes which the server uses (between 500K and 600K 
bytes) are large enough to cause the problem. 

To deal with this problem, we have changed the 
implementation of the network thread to include the 
notion of mini-cycles. In each mini-cycle, only a por- 
tion of each block of film (called a mini-block) is sent 
to each client. While the link layer of a client X han- 
dles the reception of a mini-block, mini-blocks can be 
sent to the other clients in the system. By doing so, 
we avoid overloading the link layer at client machines. 
As a result, packet losses are no longer observed. 

Mini-cycles are a technical solution to a technolog- 
ical mismatch i.e., current network devices are too 
fast for conventional operating systems. In this re- 
gard, mini-cycles are not really a part of the design 
of the ALMADEM-VOD server and were not consid- 
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ered in the Verus model we have built. Since we have 
tested our implementation of mini-cycles extensively, 
it seemed to us that mini-cycles would not interfere 
with the server operation. However, they do. If we 
simply run the mini-cycles, in situations of light load 
(for instance, when there is only one client in the 
system) too many mini-blocks will be sent to each 
client machine at once, overloading the corresponding 
network device. To deal with this type of problem, 
we have decided to put the network thread to sleep 
within a mini-cycle, such that each mini-cycle would 
have a minimal duration. As a result, the dynamic 
behavior of the system is now far more complex, be- 
cause we have to manage several mini-cycles (with 
service and sleeping times) within each service cycle. 
At this point, a programming mistake was done. 

Figure 12: Service time for the new versions of the 
server and of the Verus model (T = 4s). 

To simplify the dynamics of the server operation, 
an attempt was made to guaranttee that the network 
thread would not starve neither be overflown with 
too much data. To accomplish this effect, the pro- 
grammer synchronized the network and disk threads 
through a pair of signal and a wait primitives, as 
illustrated in Figure 11. The idea is that the net- 
work thread would wait until the disk thread indicates 
that the blocks of film are available in the buffer. 
This was decided at implementation time as an extra 
measure to ensure consistent behavior. However, the 
side-effect is that true concurrency is prevented which 
results in considerable overhead when the system op- 
erates in situations of medium to high load. This 
overhead l.ed to the results observed in Figure 10. 

We have modeled in Verus a low cost PC-based 
video on demand server called ALMMADEM-VOD. 
We have then compared the quantitative estimates 
provided by Verus with empirical measures obtained 
from the server. Such comparative analysis led us to 
investigate two main questions. First, why is the ser- 
vice time observed empirically at or above the max- 
imum service time predicted by Verus? Second, why 
does the service time observed empirically present a 
non-linearity when Verus predicts that it should in- 
crease linearly with the number of clients in the sys- 
tem? 

To fix the problem, we removed the signal and wait 

The investigation of these two main questions al- 
lowed us to tune the Verus model we have built and 
also to improve the performance of the ALMADEM- 
VOD server over 40%. The model was tuned by con- 
sidering that the disk transfer rate is a function of 
the position of the track on disk (because modern 
disk devices use a multi-zone organization in which 
the transfer rate is higher at the outer tracks). The 
implementation was improved by removing from the 
code a signaZ-wait dependency between the disk and 
network threads, which was mistakenly introduced 
at programming time. When this dependency was 

primitives from the code. As a result, the evolution of removed, the non-linearity in the evolution of the ser- 

the service time is now as illustrated in Figure 12. As 
observed, the service time for the ALMADEM-VOD 
now increases linearly, as predicted by Verus. Fur- 
ther, it is within the minimum and maximum service 
times indicated by Verus. Since the period is 4000 
mili-seconds (i.e., T = 4s), we expect that the server 
will be able to attend a maximum of 50 clients on 
average. According to Verus, this maximum will be 
close to 35 clients in the worst possible situation and 
close to 70 in the best case scenario. 

7 Conclusions 

In this work, we have discussed how formal verifica- 
tion can help with the design of multimedia systems 
in a variety of ways. The approach can be used to 
check the correctness of the system as well as to as- 
sist in determining the system performance parame- 
ters and in optimizing its design. We have focused on 
the application of the Verus tool, which is based on 
symbolic model checking and has been used to ver- 
ify a number of real-time applications in the past, to 
a specific component of a multimedia system - the 
VoD server. 
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vice time disappeared. Finally, our results illustrate [13] 

how symbolic model checking verification can be of 
great value in the analysis of the dynamic behavior 
of a multimedia system. 
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