
Formal Verification and Analysis of Multimedia Systems

Sergio CampoS Berthier Ribeiro-Netol Autran Macedoll Luciano Bertinil

1 Departamento C. Computacao 2 Departamento Informzitica
Universidade Fed. Minas Gerais - BRASIL Universidade Fed. Uberkndia - BRASIL

{scampos, berthier, autran, bertini}@dcc.ufmg.br autran@deinf.ufu.br

Abstract

Multimedia systems such as video-on-demand (VOD)
servers are time critical systems. These systems have
strict response times, which implies that a delayed
response can have serious consequence. For instance,
in the case of a VOD server, an immediate conse-
quence of a delayed response time can be user dis-
satisfaction, what can ultimately lead to the end of
a business based on this system. Therefore, analysis
and verification of timing properties of multimedia
systems is an important problem. To verify if time
critical systems satisfy their time bounds, we discuss
the use of formal methods tools, in the verification
and analysis of multimedia systems. We have used
Verus (a formal verification tool) to model and ana-
lyze the ALMADEM-VOD server, a component of a
true video-on-demand system. The modeling of this
server in Verus has provided great insight into its
design and its dynamic behavior. Using the quan-
titative estimates provided by Verus, we have de-
termined performance bounds to the server. These
bounds have pointed out that the performance curve
of the actual server was almost at the predicted upper
bound (worst case) level. These curves have uncov-
ered design inefficiencies. After optimizing the server,
its performance has improved over 40%, showing how
useful formal verification can be used successfully
during the design of multimedia systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial a&ant
-age and that copies bear this notice end the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ACM Multimedia ‘99 10199 Orlando, Ft., USA

0 1999 ACM l-58113.151-8/99/0010...$5.00

1 Introduction

The fast development of new technologies for high
bandwidth networks, wireless communication, data
compression, and high performance CPUs has made
it technically possible to deploy sophisticated infras-
tructures, such as illustrated in Figure 1, for sup-
porting a variety of multimedia applications [18, 291.
This type of infrastructure opens up opportunities
for exploring multimedia applications such as qual-
ity audio and video on demand (from home), virtual
reality environments, digital libraries, and coopera-
tive design. The user has access to these applica-
tions through a laptop (connected, for instance, to a
wireless link), a PC-based workstation, or a TV set
connected to a set-top box. Due to the high interac-
tivity of such applications, the success of the service
is heavily dependent on the delays incurred in the
high bandwidth network, on the delays incurred at
the server and client machines, and on the perfor-
mance at the multimedia server. To keep such delays
within acceptable bounds, it is necessary to check the
timing system properties.

Figure 1: Overall architecture for a video service.

However, due to its size and complexity, checking if
a multimedia system satisfies its timing specification

419

http://crossmark.crossref.org/dialog/?doi=10.1145%2F319463.319678&domain=pdf&date_stamp=1999-10-30

is an extremely difficult task. Traditional verifica- we present related work. In Section 3, we discuss the

tion methods such as testing and simulation can not Verus tool. In Section 4, we present the ALMADEM-

cover all error possibilities. An alternative approach VOD video server. In Section 5, we cover the model-
to deal with this task is the utilization of formal tech- ing of this server in Verus. In Section 6, we present
niques. Formal techniques can assure the correctness our analytical and experimental results. Our conclu-

of a program with concern to certain desired prop- sions follow.
erties. That is the approach we have used in this
work.

The formal approach we adopt here is based on
2 Related Work

symbolic <model checking (SMC) [4, 241, a formal Rate M
method which has obtained significant success re-

onotonic Scheduling Theory (RMS) [23, 221 is

cently. This method allows the verification of timing
a well known technique for real-time systems analy-

properties of a system expressed as temporal logic
sis. Given a set of processes defined by their execu-

formulas. Such formulas provide a foundation for
tion time and frequency of execution, RMS is able
t o e ermine if the system is schedulable. However, d t

the design and implementation of formal verification RMS

tools. One such tool is Verzls [8, 51 - a software en-
restricts the type of systems that can be ver-

vironment which can be used to verify time critical
ified, such as for example, distributed systems and

systems in general. In particular, in this work we use
systems with aperiodic processes (i.e., systems whose

Verus to verify a specific component of the system -
processes occur non deterministically).

the multimedia server.
Other works that also model a system as a state

We focus our study on the verification of a low cost
transition graph [17, 191, only determine if the prop-

video on demand (VoD) server called ALMMADEM-
erties are satisfied by the model, without provid-

VOD, developed within the ALMADEMl project.
ing any quantitative information. Other SMC-based
t ec mques have been extended to deal with real-time h -

Such type of server is quite distinct from conventional
servers, such as database and Web servers, which do

systems [13, 301, but only determine if the properties
are satisfied by the model, or provide limited quanti-

not have to take into account strict time constraints.
In a VoD server, failure to meet the time application

tative information about the system [14].
Some verification tools adopt a continuous time ap-

constraints will certainly lead to user dissatisfaction preach [l, 211, contrary to Verus, which uses discrete
and consequently to risks of commercial failure. Fur- time. Although continous time approach allows a
ther, to be cost effective the VoD server must present more accurate measurement of time, it demands a
good performance (which is usually measured as the 1
number of users which can be served simultaneously).

arger space to represent the model. This demand
makes modeling complex systems very difficult.

We have modeled the ALMADEM-VOD server in In formal tools based on Z [ZS], systems are speci-
Verus to verify its timing properties. We have also fi d * t e m erms of rich mathematical structures like sets,
analyzed quantitative estimates provided by Verus relations, and functions. However, the proof of the
for critical. system parameters. These estimates have specification generally is not totally automatic. In
been compared with empirical results obtained from Verus the specification of a system can be totally ver-

the server. This comparative analysis has led to a ihed in an automatic way.
better understanding of the server operation and has Other approaches for verifying the correctness of
revealed inefficiencies in the server. After inefficiency temporal features of a multimedia application have

causes were eliminated, the system performance has b een proposed in the literature. In [26], the tempo-
improved over 40%. Formal verification has been ral consistency of a hypermedia document is verified
very useful in detecting system inconsistencies and using an RT-LOTOS description, which is generated
in enhancing our knowledge about this server. automatically from the document specification. A

This paper is organized as follows. In Section 2, similar approach is adopted in [15] which proposes a

‘ALMADEM (Analysis and Applications of Algorithms for
synchronization model to verify the temporal consis-

High Performance Multimedia Networks) is a project financed
tency of a multimedia document. In [16], a suite of

bv the Ministrv of Science and TechnoloEtv in Brazil. within formal methods is used to verify the correctness of
the program PROTEM-III.

“I

PREMO - a standard for the presentation of mul-

420

timedia objects. We observe, however, that such ap-
proaches are quite distinct from our work here which
aims at verifying the dynamic temporal behavior and
the performance of the multimedia system.

3 Verus

Verus is an efficient tool for performing the formal
verification of multimedia systems and can exhaus-
tively check the state space of systems with more
than 103’ states, in a few minutes [7, 91. Verus rep-
resents the system being verified as a state-transition
graph and verifies properties about its behavior de-
scribed in temporal logic. It also allows determining
qzlantitatiwe information about the system such as its
reaction time to events and the number of times an
event occurs in a given time interval. The informa-
tion produced allows the user to check the temporal
correctness of the model and also provides insight
into the behavior of the system. Such type of insight
can help the user identify inefficiencies and suggest
optimizations to the design. Further, this analysis
can be performed before the actual implementation,
significantly reducing development costs.

Verus has already been applied to the verification
of several large complex systems (which are in pro-
duction or are components of current industrial prod-
ucts) such as an aircraft controller [9], a robotics con-
troller [6], and a distributed heterogeneous real-time
system [lo]. In this work, we use Verus to verify
the ALMADEM-VOD video server - a low cost VoD
server implemented on a PC platform.

3.1 The Verus Language

The Verus specification language is presented in this
section by a simple example. We discuss the model-
ing of a non deterministic event and an alarm (that
rings when the event occurs). A Verus specifica-
tion related to this scenario is presented in Figure 2.
Statement 1 declares a boolean global variable. In
Verus, the variable types are boolean and integer,
and global variables are the means of communication
among processes (each Verus function models an in-
dependent process). Statements 2 to 11 define the
alarm, and statements 12 to 17 define the non deter-
ministic event. The non determinism of the event is
stated by the select statement (in line 14). It assigns

czlrred, each time it executes. The wait statements
in the program serve two purposes: they determine
the passage of time in the model, and they allow pro-
cesses to observe the changes of value of all the vari-
ables of the model.

1 boolean occurred;

2 alarm 0 C 12 event 0 (
3 boolean ring; 13 while (true) 1
4 while (true) { 14 occurred =
5 if (occurred) select{false, true>;
6 ring = true; 15 wait (1);
7 else 16 1
8 ring = false; 17 I
9 wait (1);
10 1 18 spec
11 1 19 AG (occurred -> AF ring);

Figure 2: An example of a Verus program.

Properties of the system are expressed in Compu-
tation IPree Logic (CTL) [12]. A CTL formula is
formed by atomic propositions, connectives (- and
A), and/or temporal operators. These operators al-
ways come in pairs: a path quantifier followed by a
temporal quantifier. A path quantifier states that a
property should be true for all (A) paths from a given
state, or for some (E) path from a given state. A tem-
poral quantifier describes how the states should be or-
dered with respect to time, for a path specified by the
path quantifier. Some examples of temporal quanti-
fiers are: F4, where 4 holds sometime in the future;
G$, where 4 holds globally on the path. Statement
19 is an example of a Verus property and informally
means that “everywhere in the model, whenever the
event indicated by variable occurred occurs (AG), the
alarm will always ring sometime in the future (AF)“.

3.2 The Model

The state transition graph generated for a program P
is Gp = {Sp, Ip, Tp}, where Sp is the set of states,
Ip 2 5’~ is the set of initial states, and 2” is the
relation that defines the transition among states in
Sp. Each state is labeled by the value of all variables
of P; a state differs from others by the value of these
variables.

The states of Gp can be represented by boolean
formulas, and each formula represents the set of

randomly the value false or true to the variable oc- states in which the formula is true. For example,

421

the formula (X V 1~) represents all the states of Gp,
in which :c is true or y is false. Tp, the transition
relation, can also be represented by boolean formu-
las. To do that we use two sets of distinct variables,
S representing the current state and S’ representing
the next state. If the current state s is represented by
the formula fs over variables in S, and the next state
s’ is represented by the formula fsl over the variables
in S’, then the transition T(s, s’) can be represented
by the forrnula fs A fs/, As an example, the transition
from the state (x, y) to the state (X, y) is represented
by the for:mula (X A -19 A YE’ A 1~‘). Tp is the dis-
junction of all transitions in Gp.

Figure 3: The transition relation and the related
graph of the program event-alarm.

Figure 3 presents the transition relation and the
related graph for the program presented in Figure 2.
The variables WC are wait-counters that are used to
marls the position of a wait statement in the pro-
gram. The wait-counters determine the flow of the
program execution, and an initial wait statement (WC
= 0) is introduced by the compiler. An exclamation
mark (!) before a variable indicates that this vari-
able is false. A quote (‘) after a variable indicates
the value of this variable in the next state. For ex-
ample, the first transition says that in the current
state the variables event.wc and alarm. wc are both
equal 0 (zero); and in the next state the variables
occurred and aZarm.ring are both false. This transi-
tion is graphically represented by the edge from the
state labeled by (event.wc = 0 alarm.wc = 0) to the
state labeled by (event.wc = 1 alarm.wc = 1 !occurred
!alarm.ring). The advantage of this representation is
that it avoids the construction of the graph, repre-
senting only the conditions required by transitions,
therefore minimizing the necessary space to represent
the model.

Binary Decision Diagrams

As mentioned before, a Verus model is a state tran-
sition graph. However, the approach of modeling
systems as a graph suffers from the state explosion
problem. This problem is the exponential relation
of the number of states in the model to the number
of components of the system being modeled. Verus
minimizes this problem because the model (graph) is
represented by a Binary Decision Diagram (BDD)[3]
that is a canonical representation for Boolean for-
mulas . A BDD is obtained from a binary decision
tree by merging identical subtrees and eliminating
nodes with identical left and right siblings. The re-
sulting structure is a directed acyclic graph rather
than a tree. This allows nodes and substructures to
be shared. The vertices of the graph are labeled with
the variables of the Boolean formula, except for the
two “leaves” which are labeled with 0 and 1. To en-
sure canonicity, a strict total order is placed on the
variables as one traverses a path from the “root” to
a “leaf.” The edges are labeled with 0 or 1. For ev-
ery truth assignment there is a corresponding path
in the BDD such that at vertex CC:, the edge labeled
1 is taken if the assignment sets x to 1; otherwise,
the edge labeled 0 is taken. If the path ends in the
“leaf” labeled 0, then the assignment does not satisfy
the formula, and conversely, if the “leaf” reached is
labeled 1, then the formula is satisfied by the assign-
ment. Figure 4 illustrates the BDD for the Boolean
formula (u A b) V (c A d). To each instantiation of
the variables a, b, c, d which makes the formula true,
there is a direct path from the node a to node 1.

a /4 0 1

&fofg &
0001000100011111 0

Decision binary tree BDD

Figure 4: Decision binary tree and a correspondent
BDD for the Boolean formula (CZ A b) V (c A cl).

422

3.3 Quantitative Algorithms

Most verification algorithms assume that timing con-
straints are given explicitly. Typically, the designer
provides a constraint on the response time of some
operation, and the verifier automatically determines
if it is satisfied or not. Unfortunately, these tech-
niques do not provide any information about how
much a system deviates from its expected perfor-
mance, although this information can be extremely
useful in tuning the behavior of the system.

Verus implements algorithms that determine the
minimum and maximum length of all paths leading
from a set of starting states to a set of final states.
It also has algorithms that calculate the minimum
and the maximum number of times a specified condi-
tion can hold on a path from a set of starting states
to a set of final states. Our algorithms provide in-
sight into how well a system works, rather than just
determining whether it works at all. They enable a
designer to determine the timing characteristics of a
complex system given the timing parameters of its
components. This information is especially useful in
the early phases of system design, when it can be
used to establish how changes in a parameter affect
the global system behavior.

Several types of information can be produced by
this method. Response time to events is computed
by making the set of starting states correspond to
the event, and the set of final states correspond to
the response. Schedulability analysis can be done by
computing the response time of each process in the
system, and comparing it to the process deadline.
Performance can be determined in a similar way. In
fact, the algorithms have been used to verify several
real-time and non real-time systems [7, 91.

4 The ALMADEM-VOD Video
Server

The fundamental premise in the development of the
ALMADEM-VOD video server is that it should use
only off-the-shelf low cost components, as also done
in [18, 25, 291. As a result, the server is implemented
on a PC-based platform running the Linux operating
system. To fullfill the real time requirements of the
video application, the operating system is adapted
in specific points such as the disk access and process
scheduling routines.

The overall architecture of our video service is as
illustrated in Figure 1. The user accesses a Web in-
terface in a remote client machine (i.e., a TV with a
set-top-box, a PC, or a laptop connected through a
wireless link) to select a film (or object) of his pref-
erence. Once the film is selected, a requisition for a
stream for that film is sent to the server (through a
TCP connection). The server then runs an admis-
sion control routine which schedules the request if
there are enough resources available (typically, the
main bottleneck is disk bandwidth). Once the re-
quest is scheduled, blocks of data are sent periodi-
cally to the client in push mode (as UDP messages).
Figure 5 illustrates the software organization of the
ALMADEM-VOD video server.

thread priority=3 BUFFER

Figure 5: Software architecture of the video server.

Two data structures and three separate processes
are distinguished. The data structures are called
storage and buffer. The processes (implemented as
POSIX threads) are called disk, network, and clerk.
To ensure proper timing in the scheduling of these
threads, we rely on one of the real time scheduling
policies available with the Linux operating system.
We use the SCHED-FIFO policy which implements
a first-in-first-out scheduling scheme with static pri-
orities. In this policy, the priority number of a thread
is directally proportional to the system priority. De-
spite its simplicity, this scheme works quite well if the
machine is dedicated to the video server task (i.e., we
run the video server in run level 1).

The storage structure is composed of secondary or
tertiary devices and is used to hold the collection of
films available to the users. The current implemen-
tation of the ALMADEM-VOD server considers only
secondary devices in the form of conventional SCSI-
2 disks of 4G bytes each. The disks store the films
encoded and compressed in MPEG-1 format. Each
film is divided in blocks which are retrieved for deliv-
ery to the client machine. In its simplest implementa-

423

tion, which is adopted in this study, the ALMADEM-
VOD server considers a contiguous layout of films
on disk. In this layout, all blocks of a same film
are stored contiguously on disk. More sophisticated
layout schemes, involving striping techniques [2, 111,
region-based allocation [20], and randomized place-
ment [27], have been discussed extensively in the lit-
erature but are not the focus of this work.

The bufler structure is basically main memory
space used to synchronize the disk and network
threads. It is implemented as a circular buffer which
is filled by the disk thread and emptied by the net-
work thread.

The network thread is responsible for taking the
blocks of film from the buffer and shipping them ac-
cross the network. It is scheduled whenever the disk
thread is blocked at the disk driver waiting for a disk
access to complete.

The thread named clerk listens at a TCP port for
the requests from the client machines. Such requests
might come from new clients or from a current client
which requests, for instance, a pause in the exibition.
Once it detects a client request, this thread passes
the information to an admission control routine for
proper scheduling. If the server is saturated (i.e., it
is currently serving a maximum number of clients),
a request for a new stream is not scheduled and a
denial message is sent to the respective client.

The disk thread is responsible for reading the data
from the secondary storage and storing them at the
buffer area. To avoid delays introduced by the oper-
ating system (which we cannot control), disk accesses
are performed through direct access functions which
communicate directly with the SCSI controller de-
vice. For each active client, a separate block (which is
composed of several MPEG frames) of (average) size
B bytes is read, passed to the buffer area, and from
there shipped (by the network thread) to the corre-
sponding client machine. While that client consumes
the frames in that block, other clients can be attended
to. This cyclic scheduEing process is repeated with a
fixed time period equal to T, as illustrated in Fig-
ure 6. To implement this fixed time period, the disk
thread monitors the Real Time Clock (RTC) device
in the Linux kernel.

The time period T defines the service cycle. At
each service cycle, all scheduled clients are served.
To serve a, client, the seruer incurs two fundamental
delays: a seek time t, and a transfer time t,. The

T

Figure 6: Service cycle with a duration of T seconds.
t, accounts both for seek and rotational delay times.

time ts is the time to position the disk head at the
proper cylinder, plus the time to position the disk
head at the proper block of data in this cylinder (i.e.,
ts includes rotational latency time). The time t, is
the time to read the block of data from disk. The
total time Ts spent serving all clients in the system
is called the service time. The sleeping time T, is
the portion of the service cycle in which no clients
are served. Such sleeping time is necessary because,
to avoid buffer overflow at the client machine, the
server does not attend a same client twice in a service
cycle. The ratio T,/T defines the occupation of the
service cycle. Larger the occupation of the service
cycle, higher is the load in the system.

In the ALMADEM-VOD server (as seen in Fig-
ure 6), the transfer time can vary from one film to
another because the block sizes, though constant for
a same film, differ from one film to another. The rea-
son is that the coding scheme might vary from one
film to another (for instance, a film might be encoded
for a smaller window size) and that the compression
rate is not constant accross various films. The impor-
tant detail is that, in the ALMADEM-VOD server,
any block of any film is composed of roughly a same
number of frames, which defines the duration of the
service cycle. To exemplify, consider that each client
consumes frames at the typical rate of 30 fps (frames
per second). Then, if each block sent to a client in-
cludes 30 frames, the value of T is 1 second to avoid
interruption in the continuous display of the film at
the client machine. If each block includes 120 frames,
then the value of T is 4 seconds.

To simplify the implementation, the ALMADEM-
VOD server uses a Constant Data Length (CDL)
block instead of a Constant Time Length (CTL)
block [29]. The length of the blocks in which a given
film is divided is determined by the maximum con-

424

sumption rate at the client. This ensures smooth
display at the client machine. However, buffer over-
flow might occur at the client because the rate of ar-
rival exceeds the average consumption rate. To avoid
this problem, the client sends a pazlse message to the
server whenever it detects that its buffer is filling up.

Let Rci be the rate (in bytes per second, or Bps)
with which the ith client consumes a block of data.
Further, let Bi be the size (in bytes) of the blocks
of data for the ith client, as indicated in Figure 6.
Then, the period 2’ is given by

T=-$
z

Additionally, let Rd be the transfer rate of the disks
in our seconday storage and let N be the maximum
number clients which can be served in a cycle. We
can then write

5 Bi = (T - N t,)Rd
i=l

By substituting equation (1) into equation (2), we
obtain

N=;(&g)
Equation 3 shows that the maximum number of
clients in the system is a direct function of the ra-
tio x2”=, Rci/Rd and thus, that the sum of all rates
Rci must be smaller than the disk transfer rate Rd.
Furthermore, the average block size (which deter-
mines the duration of the cycle service) must be large
enough to provide an amortization of the time wasted
with seek operations. In fact, a small average block
size reduces the value of T making the fraction T/t,
smaller. This implies that the fraction of time avail-
able in a cycle for actually reading data from disk is
smaller which leads to a reduction in the maximum
number of clients which can be attended simultane-
ously.

Amortizing seek time (through an increase in the
service cycle) is critically important because it im-
proves server performance (in terms of the maximum
number of clients which can be served). However,
an excessive increase in the service cycle is counter-
productive because it implies in an excessive latency
- the time a new user waits to be served. This is
because new users are only served in the cycle which
initiates following their arrival. Additionally, large

Figure 7: Service cycle occupation in the
ALMADEM-VOD server for periods varying from 1s
to 9s. The number of clients in the system is 20.

service cycles require larger memory buffers at the
server and at the client machines.

Figure 7 illustrates the occupation of the service
cycle in the ALMADEM-VOD server for values of
the period T varying from 1 second to 9 seconds.
The number of clients in the system is 20. When
T = 1 the occupation of the service cycle is high
because of seek time (t,). The system spends more
time doing seek than reading block of films. When
T is increased, seek time is amortized by the reading
time. As shown, the amortization of the seek time
is less significant after T = 7s and does not improve
much after T = 4s. For periods larger than 4 seconds,
the server incurs higher latency without considerable
additional gains in server performance. Thus, for the
ALMADEM-VOD server, we adopt T = 4s as a good
compromise between client latency and server perfor-
mance.

At each client machine, it is necessary to run the
ALMADEM-VOD client module which is composed
of three sub-modules: network, bz@er, and decoder.
The netvrorlc component is implemented as a thread
which receives blocks of film from the server and
saves them in the bufler data structure. From the
buffer, each block is passed to the decoder compo-
nent through a Linux pipe. This architecture iso-
lates the decoder (which is normally a commercial
piece of software) from the client code (which we im-
plemented) and provides for great flexibility. For in-
stance, we were able to substitute the MPEG decoder
for an audio player in a couple of hours.

425

5 Modeling the ALMADEM-VoD
Server in Verus

Verus has a specification language that is similar to
the programming language C. The Verus language
provides special primitives that allow the user (i.e.,
designers and engineers) to model timing aspects of
a system such as deadlines, priorities and time de-
lays. Thus, modeling a multimedia system in Verus
resembles writing a C program. A Verus specifica-
tion is converted into a state transition graph (see
Figure 3) and efficient search algorithm determines if
the model satisfies the properties.

The modeling of the ALMADEM-VOD server has
occurred while the designers of this system were de-
veloping it. The system parameters we have consid-
ered in the model were obtained from the version that
was running at that time. The system parameters
are: (1) a period of 4 seconds; (2) a consumption rate
Rci at each client machine which varies from 1Mbps
to 1.2Mbps (mega bits per second); (3) a film block
size B which varies from 500K bytes to 600K bytes;
(4) a contiguous layout of the blocks of each film in
disk; (5) a disk transfer rate of 7.8MBps (mega bytes
per second); (6) a disk seek time (including rotational
delay time) which varies from 10ms to 20ms (mil-
liseconds). The disk transfer rate were determined
by reading disk blocks from disk. Although the nom-
inal disk transfer rate of the disk is IOMBps, reading
500KB to 600KB disk blocks of films has led to disk
transfer rate presented in item 5.

As mentioned before, performance in a VOD sys-
tem is measured by the number of users it can serve
simultaneously. The designers of the ALMADEM-
VOD system had already measured the system per-
formance, but they did not have any information
about how close to optimum this performance was.
Since the ALMADEM-VOD server is the bottleneck
of the system, we have modeled it to determine the
minimum and maximum number of users the server
can support in a cycle of service (4 seconds). In this
model (Figure 8)) we have considered the seek and ro-
tational delay times (t,), and the transfer (tT). Each
wait (1) statement means 5ms. The time t, varies
from 10ms to 20ms (corresponding to 2 to 4 wait’s)
and is assigned non deterministically. The time t,
varies approximately from 60ms to 75ms (correspond-
ing to 12 to 15 wait’s), depending on the block size.
The MIN and MAX statements relate to the quanti-

. . .
vhile (true) C

. . .
seekTime = select <2,3,4); /* valid seek time */
while (seekTime > 0) {

vait (1); /* passage of seek time */
seekTime = seekTime - 1;

3
readingTime = select {12,13.14,15); /* valid disk time */
while (readingTime > 0) {

wait (1); /* passage disk transfer time */
readingTime = readingTime - 1;

1
. . .

)
. . .

/* minimum and maximum service time in a cycle */
MIN CbeginningOfService, end0fService);
MAX (beginningofservice, end0fService);

Figure 8: Portions of the specification of the
ALMADEM-VOD server in Verus.

tative algorithms mentioned in Section 3.3. These al-
gorithms are able to determine, respectively, the min-
imum and maximum distance between two events. In
the case of this model the events are the beginning
and the end of a cycle of service. Using these algo-
rithms we were able to determine the bounds of the
server in terms of the number of users served simul-
taneously.

6 Results

We have compared the quantitative results provided
by Verus with the empirical results obtained from the
server. The critical system parameters, discussed in
Section 5, are the same both for the Verus model and
for the version of the server used in our experiments.

In Figure 9, we illustrate how the service time
evolves as the number of clients in the system in-
creases. The continuous curve is relative to measure-
ments obtained from the ALMADEM-VOD server,
while the dashed curves illustrate the minimum and
maximum service times according to Verus. We ob-
serve two major facts: (1) the ALMADEM-VOD
server always operates at or above the maximum ser-
vice time predicted by Verus; (2) the ALMADEM-
VOD server presents an unexpected non-linearity in
its service time when saturation has not been reached
yet (i.e., with 25 clients in the system).

These two observations motivated a thorough in-
spection of the implementation of our server and of

426

Figure 9: Variation of the service time occupation by
clients for the server and for Verus (2’ = 4s).

the Verus model we built, in an attempt to make
the results generated by the ALMADEM-VOD server
and by Verus consistent.

We have analyzed the dynamic behavior of the
Verus model and it was working properly. We have
then measured once more the various system param-
eters we were using and found a problem. The Verus
model we built considers a constant disk transfer rate.
However, modern disk devices use a multi-zone orga-
nization in which there are more sectors per track in
the outer tracks. As a result, the outer tracks yield
a higher transfer rate because their tangential speed
is higher. To correct the problem, we have changed
the Verus model to consider that the transfer rate
assumes basically 4 distinct values depending on the
track the block of data is in. The new predictions for
the service time are shown in Figure 10. We observe
that now the maximum service times predicted by
the revised Verus model are higher.

However, under heavy load, the service times ob-
tained from the ALMADEM-VOD server continue
to exceed the maximum service times predicted by
Verus, as illustrated in Figure 10. Further, the non-
linearity in the service time of the server is still with-
out explanation. Clearly, the implementation of the
server is running into non anticipated overheads. In
the search for an explanation, we have investigated
the code for the VoD server and then noticed a pecu-
liarity which had not been accounted for in the Verus
model we built. This peculiarity is as follows.

In our laboratory, the video server sends blocks of
film to its clients through a Myrinet switch which
runs at a raw bandwidth of 1 Gbps (giga bits per

,.. ..: . :.. .__

Figure 10: Service time for the ALMADEM-VOD
server and for the revised Verus model (T = 4s).

disk i network C
while (1) C while (1) <

. *
pthread-cond-signal(&cs); pthread-cond-wait(&cs,&mtx);
.
Read blocks from disk; mini-cyclesO;
.

1 1
) >

Figure 11: Synchronization of disk and network
threads through a pair of signal and wait primitives.

second). At this bandwidth, conventional implemen-
tations of the link layer are unable to handle all the
data which arrives at the network physical device.
The result, which we observed systematically, is that
packets of data are lost at the client machine if a block
of film large enough is passed at once to the Linux
link layer at the server side. Unfortunately, the block
sizes which the server uses (between 500K and 600K
bytes) are large enough to cause the problem.

To deal with this problem, we have changed the
implementation of the network thread to include the
notion of mini-cycles. In each mini-cycle, only a por-
tion of each block of film (called a mini-block) is sent
to each client. While the link layer of a client X han-
dles the reception of a mini-block, mini-blocks can be
sent to the other clients in the system. By doing so,
we avoid overloading the link layer at client machines.
As a result, packet losses are no longer observed.

Mini-cycles are a technical solution to a technolog-
ical mismatch i.e., current network devices are too
fast for conventional operating systems. In this re-
gard, mini-cycles are not really a part of the design
of the ALMADEM-VOD server and were not consid-

427

ered in the Verus model we have built. Since we have
tested our implementation of mini-cycles extensively,
it seemed to us that mini-cycles would not interfere
with the server operation. However, they do. If we
simply run the mini-cycles, in situations of light load
(for instance, when there is only one client in the
system) too many mini-blocks will be sent to each
client machine at once, overloading the corresponding
network device. To deal with this type of problem,
we have decided to put the network thread to sleep
within a mini-cycle, such that each mini-cycle would
have a minimal duration. As a result, the dynamic
behavior of the system is now far more complex, be-
cause we have to manage several mini-cycles (with
service and sleeping times) within each service cycle.
At this point, a programming mistake was done.

Figure 12: Service time for the new versions of the
server and of the Verus model (T = 4s).

To simplify the dynamics of the server operation,
an attempt was made to guaranttee that the network
thread would not starve neither be overflown with
too much data. To accomplish this effect, the pro-
grammer synchronized the network and disk threads
through a pair of signal and a wait primitives, as
illustrated in Figure 11. The idea is that the net-
work thread would wait until the disk thread indicates
that the blocks of film are available in the buffer.
This was decided at implementation time as an extra
measure to ensure consistent behavior. However, the
side-effect is that true concurrency is prevented which
results in considerable overhead when the system op-
erates in situations of medium to high load. This
overhead l.ed to the results observed in Figure 10.

We have modeled in Verus a low cost PC-based
video on demand server called ALMMADEM-VOD.
We have then compared the quantitative estimates
provided by Verus with empirical measures obtained
from the server. Such comparative analysis led us to
investigate two main questions. First, why is the ser-
vice time observed empirically at or above the max-
imum service time predicted by Verus? Second, why
does the service time observed empirically present a
non-linearity when Verus predicts that it should in-
crease linearly with the number of clients in the sys-
tem?

To fix the problem, we removed the signal and wait

The investigation of these two main questions al-
lowed us to tune the Verus model we have built and
also to improve the performance of the ALMADEM-
VOD server over 40%. The model was tuned by con-
sidering that the disk transfer rate is a function of
the position of the track on disk (because modern
disk devices use a multi-zone organization in which
the transfer rate is higher at the outer tracks). The
implementation was improved by removing from the
code a signaZ-wait dependency between the disk and
network threads, which was mistakenly introduced
at programming time. When this dependency was

primitives from the code. As a result, the evolution of removed, the non-linearity in the evolution of the ser-

the service time is now as illustrated in Figure 12. As
observed, the service time for the ALMADEM-VOD
now increases linearly, as predicted by Verus. Fur-
ther, it is within the minimum and maximum service
times indicated by Verus. Since the period is 4000
mili-seconds (i.e., T = 4s), we expect that the server
will be able to attend a maximum of 50 clients on
average. According to Verus, this maximum will be
close to 35 clients in the worst possible situation and
close to 70 in the best case scenario.

7 Conclusions

In this work, we have discussed how formal verifica-
tion can help with the design of multimedia systems
in a variety of ways. The approach can be used to
check the correctness of the system as well as to as-
sist in determining the system performance parame-
ters and in optimizing its design. We have focused on
the application of the Verus tool, which is based on
symbolic model checking and has been used to ver-
ify a number of real-time applications in the past, to
a specific component of a multimedia system - the
VoD server.

428

vice time disappeared. Finally, our results illustrate [13]

how symbolic model checking verification can be of
great value in the analysis of the dynamic behavior
of a multimedia system.

References

PI

PI

PI

PI

[51

PI

VI

PI

PI

PO1

IllI

P21

R. Alur, C. Courcourbetis, and D. Dill. Model-
checking for real-time systems. In 5th Symposium
on Logic in Computer Science, 1990.

S. Berson, R.Muntz, S. Ghandeharizadeh, and X. Ju.
Staggered striping in multimedia information sys-
tems. In ACM SIGMOD Conference, 1994.

R. E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Com-
puters, C-35(8), 1986.

J. Burch, E. Clarke, K. McMillan, D. Dill, and
J. Hwang. Symbolic model checking: 102’ states and
beyond. In Symp. on Logic in Comp. Science, 1990.

S. Campos. A Quantitative Approach to the For-
mal Verification of Real-Time Systems. PhD thesis,
Carnegie Mellon University, 1996.

S. Campos, E. Clarke, W. Marrero, and M. Minea.
Timing analysis of industrial real-time systems. In
Workshop on Industrial-strength Formal specification
Techniques, 1995.

S. Campos, E. Clarke, W. Marrero, and M. Minea.
Verifying the performance of the PC1 local bus us-
ing symbolic techniques. In Intl. Conf. on Comptiter
Design, 1995.

S. Campos, E. Clarke, W. Marrero, and M. Minea.
Verus: a tool for quantitative analysis of finite-state
real-time systems. In ACM Workshop on Languages
Compilers and Tools for Real-Time Systems, 1995.

S. Campos, E. Clarke, W. Marrero, M. Minea, and
H. Hiraishi. Computing quantitative characteristics
of finite-state real-time systems. In IEEE Real-Time
Systems Symp., 1994.

S. Campos and 0. Grumberg. Selective quantitative
analysis and interval model checking: Verifying dif-
ferent facets of a system. In Conference on Computer-
Aided Verification. Springer-Verlag, 1996.

T. Chua, J. Li, B. Ooi, and K. Tan. Disk striping
strategies for large video-on-demand servers. In ACM
IntE. Multimedia Conf., pages 297-306, 1996.

E. Clarke and E. Emerson. Synthesis of synchroniza-
tion skeletons for branching time temporal logic. In
Logic of Programs: Workshop, volume 131 of LNCS.
Springer-Verlag, 1981.

PI

I151

WI

P71

P81

PI

PO1

Pll

1221

P31

PI

[251

WI

R. Cleaveland, P. Lewis, S. Smolka, and 0. Sokolsky.
The concurrency factory: a development environment
for concurrent systems. In 8th Conf. on CompuLter-
Aided Verification, volume 1102 of LNCS. Springer-
Verlag, 1996.

P. Clements, C. Heitmeyer, G. Labaw, and A. Rose.
MT: a toolset for specifying and analyzing real-time
systems. In IEEE Real-Time Systems Symp., 1993.

J.-P. Courtiat and R. Oliveira. Proving temporal con-
sistency in a new multimedia synchronization model.
In ACM Intl. Multimedia Conf., pages 141-152,1996.

D.A.Dulce, D.J.Duke, G.Faconti, I.Hermam, and
M.Massink. Premo: a case study in formal methods
and multimedia system specification, 1997. CWI’s
techinical report: INS-R9708.

A. N. Fredette and R. Cleaveland. RTSL: a language
for real-time schedulability analisys. In IEEE Real-
Time Systems Symp., 1993.

C.S. Freedman and D.J. Dewitt. The SPIFF1 scal-
able video-on-demand system. In ACM Intl. Multi-
media Conf., pages 352-363, 1995.

R. Gerber and I. Lee. A proof system for communi-
cating shared resources. In IEEE Real- Time Systems
Symp., 1990.

S. Ghandeharizadeh, S. Kim, and C. Shahabi. On
configuring a single disk continuous media server. In
ACM Sigmetrics Performance, 1995.

T. Henzinger, P. Ho, and W. Wong-Toi. Hytech: the
next generation. In IEEE Real- Time Systems Symp.,
1995.

J. Lehoczky, L. Sha, J. Strosnider, and H. Tokuda.
Fixed priority scheduling theory for hard real-time
systems. In Andre M. van Tilborg and Gary M.
Koob, editors, Foundations of Real-Time Comput-
ing - Scheduling and Resource Management. Kluwer,
1991.

C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard real-time environ-
ment. Journal of the ACM, 20(l), 1973.

K. McMillan Symbolic Model Checking. Kluwer,
1993.

B. Ozden, R. Rastogi, and A. Silberschatz. On the
design of a low-cost video-on-demand storage system.
In ACM Int. Multimedia Conference, pages 40-54,
1996.

C. Santos, L. Soares, G. Souza, and JP. Courtiat.
Design methodology and formal validation of hyper-
midia documents. In ACM Intl. Multimedia Conf.,
pages 39-48,1998.

429

[27] J.R. Santos and R. Muntz. Performance analysis of
the RIO multimedia storage system with heteroge-
neous disk configurations. In ACM I&E. Multimedia
Co7bf., 1998.

[28] J. hl. Spivey. Introducing 2: a Specification Language
and its Formal Semantics. Cambridge Press, 1988.

[29] M. Vernick, C. Venkatramani, and T. Chiueh. Ad-
ventures in building the stony brook video server. In
ACM Intl. Multimedia Conf., pages 287-295, 1996.

[30] J. Yang, A. K. Mok, and F. Wang. Symbolic model
checking for event-driven real-time systems. In IEEE
Real-Time Systems Symp., 1993.

430

